全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2012 

In Silico Experimental Modeling of Cancer Treatment

DOI: 10.5402/2012/828701

Full-Text   Cite this paper   Add to My Lib

Abstract:

In silico experimental modeling of cancer involves combining findings from biological literature with computer-based models of biological systems in order to conduct investigations of hypotheses entirely in the computer laboratory. In this paper, we discuss the use of in silico modeling as a precursor to traditional clinical and laboratory research, allowing researchers to refine their experimental programs with an aim to reducing costs and increasing research efficiency. We explain the methodology of in silico experimental trials before providing an example of in silico modeling from the biomathematical literature with a view to promoting more widespread use and understanding of this research strategy. 1. Introduction Traditional laboratory-based cancer research involves expensive trial and error experimental strategies applied to humans, animals, and their harvested tissues. “In silico experimentation,” the coupling of current computing technologies with mathematical or theoretical characterizations of cancer cell biology, provides a novel approach to guiding the early stages of hypothesis development and experimental design that has the potential to create subsequent efficiencies and cost savings in the laboratory. This computational approach is advantageous because it allows vast numbers of experiments to be carried out that are easily observed at any desired level of detail and can be repeated and controlled at will. It seems difficult to argue that preclinical studies in cancer biology are expensive. Such studies involving in vitro and in vivo animal experiments involve hypothesis generation and testing to determine whether further trials are warranted and are extremely costly both in terms of researchers’ time and the associated financial investment. Costs, such as laboratory setup, equipment and space, time spent by academics training others, and the time, equipment, and materials costs involved in repetitive, hands-on experimental work, all contribute to the expense of laboratory-based experimental research. Our contention in this paper, a view shared by many researchers in the closely related fields of computational, theoretical and mathematical biology, is that in silico experiments can be used as precursors to, or in combination with, preclinical experimental studies to provide guidance for the development of more refined hypotheses and experimental studies. In silico and mathematical modeling lends itself to the determination of preliminary information such as toxicity, pharmacokinetics, and efficacy, which can then be used to guide

References

[1]  S. A. Rosenberg, J. C. Yang, P. F. Robbins et al., “Cell transfer therapy for cancer: lessons from sequential treatments of a patient with metastatic melanoma,” Journal of Immunotherapy, vol. 26, no. 5, pp. 385–393, 2003.
[2]  A. C. Burton, “Rate of growth of solid tumours as a problem of diffusion,” Growth, Development and Aging, vol. 30, no. 2, pp. 157–176, 1966.
[3]  H. P. Greenspan, “Models for the growth of a solid tumor by diffusion,” Studies in Applied Mathematics, vol. 52, pp. 317–340, 1972.
[4]  H. P. Greenspan, “On the self inhibited growth of cell cultures,” Growth, vol. 38, no. 1, pp. 81–95, 1974.
[5]  H. P. Greenspan, “On the growth and stability of cell cultures and solid tumors,” Journal of Theoretical Biology, vol. 56, no. 1, pp. 229–242, 1976.
[6]  R. P. Araujo and D. L. S. McElwain, “A history of the study of solid tumour growth: the contribution of mathematical modelling,” Bulletin of Mathematical Biology, vol. 66, no. 5, pp. 1039–1091, 2004.
[7]  T. Alarcón, H. M. Byrne, and P. K. Maini, “A cellular automaton model for tumour growth in inhomogeneous environment,” Journal of Theoretical Biology, vol. 225, no. 2, pp. 257–274, 2003.
[8]  D. G. Mallet and L. G. de Pillis, “A cellular automata model of tumor-immune system interactions,” Journal of Theoretical Biology, vol. 239, no. 3, pp. 334–350, 2006.
[9]  L. G. de Pillis, D. G. Mallet, and A. E. Radunskaya, “Spatial tumor-immune modeling,” Computational and Mathematical Methods in Medicine, vol. 7, no. 2-3, pp. 159–176, 2006.
[10]  S. C. Ferreira, M. L. Martins, and M. J. Vilela, “Reaction-diffusion model for the growth of avascular tumor,” Physical Review E, vol. 65, no. 2, Article ID 021907, 8 pages, 2002.
[11]  S. C. Ferreira, M. L. Martins, and M. J. Vilela, “Morphology transitions induced by chemotherapy in carcinomas in situ,” Physical Review E, vol. 67, no. 5, Article ID 051914, 9 pages, 2003.
[12]  M. Utley, C. Paschalides, and T. Treasure, “Informing decisions concerning adjuvant chemotherapy following surgical resection for non-small cell lung cancer: a mathematical modelling study,” Lung Cancer, vol. 53, no. 2, pp. 153–156, 2006.
[13]  L. G. de Pillis, A. E. Radunskaya, and C. L. Wiseman, “A validated mathematical model of cell-mediated immune response to tumor growth,” Cancer Research, vol. 65, no. 17, pp. 7950–7958, 2005.
[14]  A. A. Patel, E. T. Gawlinski, S. K. Lemieux, and R. A. Gatenby, “A cellular automaton model of early tumor growth and invasion: the effects of native tissue vascularity and increased anaerobic tumor metabolism,” Journal of Theoretical Biology, vol. 213, no. 3, pp. 315–331, 2001.
[15]  L. Zhang, J. R. Conejo-Garcia, D. Katsaros et al., “Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer,” The New England Journal of Medicine, vol. 348, no. 3, pp. 203–213, 2003.
[16]  J. C. Schmollinger, R. H. Vonderheide, K. M. Hoar et al., “Melanoma inhibitor of apoptosis protein (ML-IAP) is a target for immune-mediated tumor destruction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 6, pp. 3398–3403, 2003.
[17]  R. Soiffer, T. Lynch, M. Mihm et al., “Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 22, pp. 13141–13146, 1998.
[18]  V. A. Kuznetsov and G. D. Knott, “Modeling tumor regrowth and immunotherapy,” Mathematical and Computer Modelling, vol. 33, no. 12-13, pp. 1275–1287, 2001.
[19]  L. G. de Pillis and A. Radunskaya, “A mathematical tumor model with immune resistance and drug therapy: an optimal control approach,” Journal of Theoretical Medicine, vol. 3, no. 2, pp. 79–100, 2001.
[20]  L. G. de Pillis and A. Radunskaya, “The dynamics of an optimally controlled tumor model: a case study,” Mathematical and Computer Modelling, vol. 37, no. 11, pp. 1221–1244, 2003.
[21]  J. H. Folkman and M. Hochberg, “Self regulation of growth in three dimensions,” Journal of Experimental Medicine, vol. 138, no. 4, pp. 745–753, 1973.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133