%0 Journal Article %T In Silico Experimental Modeling of Cancer Treatment %A Trisilowati %A D. G. Mallet %J ISRN Oncology %D 2012 %R 10.5402/2012/828701 %X In silico experimental modeling of cancer involves combining findings from biological literature with computer-based models of biological systems in order to conduct investigations of hypotheses entirely in the computer laboratory. In this paper, we discuss the use of in silico modeling as a precursor to traditional clinical and laboratory research, allowing researchers to refine their experimental programs with an aim to reducing costs and increasing research efficiency. We explain the methodology of in silico experimental trials before providing an example of in silico modeling from the biomathematical literature with a view to promoting more widespread use and understanding of this research strategy. 1. Introduction Traditional laboratory-based cancer research involves expensive trial and error experimental strategies applied to humans, animals, and their harvested tissues. ¡°In silico experimentation,¡± the coupling of current computing technologies with mathematical or theoretical characterizations of cancer cell biology, provides a novel approach to guiding the early stages of hypothesis development and experimental design that has the potential to create subsequent efficiencies and cost savings in the laboratory. This computational approach is advantageous because it allows vast numbers of experiments to be carried out that are easily observed at any desired level of detail and can be repeated and controlled at will. It seems difficult to argue that preclinical studies in cancer biology are expensive. Such studies involving in vitro and in vivo animal experiments involve hypothesis generation and testing to determine whether further trials are warranted and are extremely costly both in terms of researchers¡¯ time and the associated financial investment. Costs, such as laboratory setup, equipment and space, time spent by academics training others, and the time, equipment, and materials costs involved in repetitive, hands-on experimental work, all contribute to the expense of laboratory-based experimental research. Our contention in this paper, a view shared by many researchers in the closely related fields of computational, theoretical and mathematical biology, is that in silico experiments can be used as precursors to, or in combination with, preclinical experimental studies to provide guidance for the development of more refined hypotheses and experimental studies. In silico and mathematical modeling lends itself to the determination of preliminary information such as toxicity, pharmacokinetics, and efficacy, which can then be used to guide %U http://www.hindawi.com/journals/isrn.oncology/2012/828701/