Aluminium alloy-based metal matrix composites (AMMCs) have been by now established themselves as a suitable wear resistant material especially for sliding wear applications. However, in actual practice engineering components usually encounter combination of wear types. An attempt has been made in the present paper to highlight the effect of dispersing SiC in 2014 base alloy adopting the liquid metallurgy route on different wear modes like sliding, abrasion, erosion, and combinations of wear modes like cavitation erosion, erosion abrasion, sliding abrasion, and the results obtained compared with the base alloy. It is found that there are a number of contributing factors for the resulting wear and all are not necessarily derogatory in nature. The limits within which the AMMCs can exhibit superior performance over the base alloy have been discussed. Worn surface and subsurface studies have been carried out to understand the mechanism of material removal and the role of the different contributing factors to material removal. Wear mechanisms that have been prevalent have been suggested and the possibility of making wear resistant components from the MMCs is discussed based on the experimental results obtained. 1. Introduction Material scientists and researchers in this area have been fulfilling the demand of the engineering sector since decades in synthesizing materials to attain the demanded properties to enhance efficiency and cost savings in the manufacturing sector. In fulfilling this demand, a certain trend has been followed, the materials presently been used is tried for improvement through known methods of alloy additions, heat treatment, grain modification, and the like. Once the limit is reached through these methods, either due to economic constraint, difficulty in mass production, or further improvement is ruled out, a different line of thought emerges in further improving the properties or decreasing cost and increasing efficiency. At times, a completely new system takes over, like was done around three decades back when metal matrix composites (MMCs) were thought of. Since a few years, the economically feasible routes, dispersoids, and alloy system that can give meaningful improvement have been narrowed down. Among MMCs, Al-alloy-based composites were always on the forefront of research. Parallel areas of research had then emerged but after about two decades of research in various disciplines to further enhance the properties to satisfy the ever increasing demand of the engineering sector, composites took a lead compared to the other processes
References
[1]
M. S. Zedalis, P. S. Cilman, and S. K. Das, “High temperature aluminum-base composites,” in High Performance Composites for the 1990's, S. D. Das, et al., Ed., pp. 61–81, The Metallurgy Society of AIME, Warrendale, Pa, USA, 1990.
[2]
P. K. Rohatgi, S. Das, and T. K. Dan, “Cast Al-graphite particle composites, a potential engineering material,” Journal of the Institution of Engineers, vol. 67, no. 2, pp. 77–83, 1987.
[3]
P. K. Rohatgi, S. Das, and R. Asthana, “Science, technology and industrial potential of cast metal ceramic particle composites,” in Materials Science and Technology in the Future, pp. 123–184, CSIR, Bhopal, India, 1985.
[4]
Engineered Materials Handbook: Composites, vol. 1, ASM International, Materials Park, Ohio, USA, 1989.
[5]
M. K. Surappa, “Aluminium metal matrix composites: challenges and opportunities,” Sadhana, vol. 28, no. 1-2, pp. 319–334, 2003.
[6]
U. Hecht and S. Rex, “On the transition from pushing to engulfment during directional solidification of the particle-reinforced aluminum-based metal-matrix composite 2014 + 10 Vol Pct Al2O3,” Metallurgical and Materials Transactions A, vol. 28, no. 13, pp. 867–874, 1997.
[7]
R. Asthana, “Reinforced cast metals: part I Solidification microstructure,” Journal of Materials Science, vol. 33, no. 7, pp. 1679–1698, 1998.
[8]
C. P. Hong, H. F. Shen, and I. S. Cho, “Prevention of macrosegregation in squeeze casting of an Al-4.5 wt pet Cu alloy,” Metallurgical and Materials Transactions A, vol. 29, no. 1, pp. 339–349, 1998.
[9]
L. H. Chen and D. A. Rigney, “Transfer during unlubricated sliding wear of selected metal systems,” Wear, vol. 105, no. 1, pp. 47–61, 1985.
[10]
R. L. Deuis, C. Subramanian, and J. M. Yellup, “Abrasive wear of aluminium composites—a review,” Wear, vol. 201, no. 1-2, pp. 132–144, 1996.
[11]
F. M. Hosking, F. F. Portillo, R. Wunderlin, and R. Mehrabian, “Composites of aluminium alloys: fabrication and wear behaviour,” Journal of Materials Science, vol. 17, no. 2, pp. 477–498, 1982.
[12]
S. Turenne, Y. Chatigny, D. Simard, S. Caron, and J. Masounave, “The effect of abrasive particle size on the slurry erosion resistance of particulate-reinforced aluminium alloy,” Wear, vol. 141, no. 1, pp. 147–158, 1990.
[13]
K. H. Z. Gahr, “Wear by hard particles,” Tribology International, vol. 31, no. 10, pp. 587–596, 1998.
[14]
P. J. Blau, “Fifty years of research on the wear of metals,” Tribology International, vol. 30, no. 5, pp. 321–331, 1997.
[15]
A. T. Alpas and J. D. Embury, “Sliding and abrasive wear behaviour of an aluminum (2014)-SiC particle reinforced composite,” Scripta Metallurgica et Materiala, vol. 24, no. 5, pp. 931–935, 1990.
[16]
D. Rupa and M. Humaira, “High stress abrasive wear behaviour of Al-2014 alloy and its SiC composite,” International Journal of Microstructure and Materials Properties, vol. 3, no. 2-3, 2008.
[17]
R. Dasgupta, H. Meenai, and S. Das, “Age hardening of Al 201-alloy and 2014-SiC composites,” Journal of Materials Science Letters, vol. 22, no. 5, pp. 391–394, 2003.
[18]
D. Rupa, “The stretch, limit and path forward for particle reinforced metal matrix composites of 7075 Al-Alloys,” Engineering, vol. 2, no. 4, pp. 237–256, 2010.
[19]
S. Das, D. P. Mondal, S. Sawla, and S. Dixit, “High stress abrasive wear mechanism of LM13-SiC composite under varying experimental conditions,” Metallurgical and Materials Transactions A, vol. 33, no. 9, pp. 3031–3044, 2002.
[20]
M. S. Bingley and S. Schnee, “A study of the mechanisms of abrasive wear for ductile metals under wet and dry three-body conditions,” Wear, vol. 258, no. 1–4, pp. 50–61, 2005.
[21]
K. Kato, “Classification of wear mechanisms/models,” Proceedings of the Institution of Mechanical Engineers J, vol. 216, no. 6, pp. 349–356, 2002.
[22]
X. F. Zhang, G. Y. Lee, D. Chen, R. O. Ritchie, and L. C. De Jonghe, “Abrasive wear behavior of heat-treated ABC-silicon carbide,” Journal of the American Ceramic Society, vol. 86, no. 8, pp. 1370–1378, 2003.
[23]
R. I. Trezona, D. N. Allsopp, and I. M. Hutchings, “Transitions between two-body and three-body abrasive wear: influence of test conditions in the microscale abrasive wear test,” Wear, vol. 225–229, no. I, pp. 205–214, 1999.
[24]
J. A. Williams and A. M. Hyncica, “Mechanisms of abrasive wear in lubricated contacts,” Wear, vol. 152, no. 1, pp. 57–74, 1992.
[25]
F. M. Hosking, F. F. Portillo, R. Wunderlin, and R. Mehrabian, “Composites of aluminium alloys: fabrication and wear behaviour,” Journal of Materials Science, vol. 17, no. 2, pp. 477–498, 1982.
[26]
B. Venkataraman and G. Sundararajan, “Correlation between the characteristics of the mechanically mixed layer and wear behaviour of aluminium, Al-7075 alloy and Al-MMCs,” Wear, vol. 245, no. 1-2, pp. 22–38, 2000.
[27]
Y. L. Gun, C. K. H. Dharan, and R. O. Ritchie, “A physically-based abrasive wear model for composite materials,” Wear, vol. 252, pp. 322–331, 2002.