%0 Journal Article %T Aluminium Alloy-Based Metal Matrix Composites: A Potential Material for Wear Resistant Applications %A Rupa Dasgupta %J ISRN Metallurgy %D 2012 %R 10.5402/2012/594573 %X Aluminium alloy-based metal matrix composites (AMMCs) have been by now established themselves as a suitable wear resistant material especially for sliding wear applications. However, in actual practice engineering components usually encounter combination of wear types. An attempt has been made in the present paper to highlight the effect of dispersing SiC in 2014 base alloy adopting the liquid metallurgy route on different wear modes like sliding, abrasion, erosion, and combinations of wear modes like cavitation erosion, erosion abrasion, sliding abrasion, and the results obtained compared with the base alloy. It is found that there are a number of contributing factors for the resulting wear and all are not necessarily derogatory in nature. The limits within which the AMMCs can exhibit superior performance over the base alloy have been discussed. Worn surface and subsurface studies have been carried out to understand the mechanism of material removal and the role of the different contributing factors to material removal. Wear mechanisms that have been prevalent have been suggested and the possibility of making wear resistant components from the MMCs is discussed based on the experimental results obtained. 1. Introduction Material scientists and researchers in this area have been fulfilling the demand of the engineering sector since decades in synthesizing materials to attain the demanded properties to enhance efficiency and cost savings in the manufacturing sector. In fulfilling this demand, a certain trend has been followed, the materials presently been used is tried for improvement through known methods of alloy additions, heat treatment, grain modification, and the like. Once the limit is reached through these methods, either due to economic constraint, difficulty in mass production, or further improvement is ruled out, a different line of thought emerges in further improving the properties or decreasing cost and increasing efficiency. At times, a completely new system takes over, like was done around three decades back when metal matrix composites (MMCs) were thought of. Since a few years, the economically feasible routes, dispersoids, and alloy system that can give meaningful improvement have been narrowed down. Among MMCs, Al-alloy-based composites were always on the forefront of research. Parallel areas of research had then emerged but after about two decades of research in various disciplines to further enhance the properties to satisfy the ever increasing demand of the engineering sector, composites took a lead compared to the other processes %U http://www.hindawi.com/journals/isrn.metallurgy/2012/594573/