A computational study of a colloidal dispersion stabilized with grafted polymer layers is presented here as a model for white, water-based paints. The interaction model includes repulsive, three-body interactions and attractive van der Waals forces. The electrostatic interactions are also studied. Stability criteria can be established for the dispersion, such as the thickness of the adsorbed polymer layers, and the quality of the solvent. Using implicit solvent molecular dynamics calculations, the spatial distribution of the pigments is obtained through the calculation of the radial distribution functions. The results show that the solvent quality and the thickness of the grafted polymer layer are key variables in the stability of the dispersion. Additionally, a structural phase transition is predicted, which is driven by the pigment concentration in the dispersion. It is argued that the predictions of this work are useful guidelines in the design of paints and coatings of current industrial interest. 1. Introduction Colloidal dispersions are complex fluids composed of one or more dispersed phases immersed in a continuous phase (solvent). A full statistical mechanical description of such a system is a nontrivial challenge because of the disparity of scales between the colloidal particles and the solvent molecules [1]. These dispersions play a very important role in contemporary societies, as they are present in fields ranging from biological systems to industrial applications. A typical example of a colloidal dispersion is a water-based, architectural paint, which is the system one should have in mind for this work. The existence of fluctuating electric dipoles among the atoms that make up the colloidal particles leads to the appearance of an attractive interaction between them, known as the van der Waals (vdW) interaction, which is however, short ranged. If no repulsive forces were present, the vdW attraction would drive particles to come close together, leading to the instability of the dispersion [2]. Alternatively, a stable colloidal dispersion is that in which colloids are homogeneously dispersed in the solvent. There are 2 popular mechanisms that help prevent irreversible colloidal instability. One is through steric effects; the other is by means of electrostatic charges present on the colloids surfaces [1]. The present work deals primarily with the former and considers that all particles are covered with a layer formed by adsorbed polymers. When the particles come close to each other, the polymers that constitute the layers start to overlap,
References
[1]
D. H. Napper, Polymeric Stabilization of Colloidal Dispersions, Academic Press, London, UK, 1983.
[2]
J. N. Israelachvili, Intermolecular and Surface Forces, Academic, New York, NY, USA, 2nd edition, 1992.
[3]
S. Farrokhpay, G. E. Morris, D. Fornasiero, and P. Self, “Effects of chemical functional groups on the polymer adsorption behavior onto titania pigment particles,” Journal of Colloid and Interface Science, vol. 274, no. 1, pp. 33–40, 2004.
[4]
E. B. Zhulina, O. V. Borisov, and V. A. Priamitsyn, “Theory of steric stabilization of colloid dispersions by grafted polymers,” Journal of Colloid And Interface Science, vol. 137, no. 2, pp. 495–511, 1990.
[5]
J. M. H. M. Scheutjens and G. J. Fleer, “Interaction between two adsorbed polymer layers,” Macromolecules, vol. 18, no. 10, pp. 1882–1900, 1985.
[6]
F. Alarcón, E. Pérez, and A. Gama Goicochea, “Dissipative particle dynamics simulations of weak polyelectrolyte adsorption on charged and neutral surfaces as a function of the degree of ionization,” Soft Matter, vol. 9, pp. 3777–3788, 2013.
[7]
P. G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY, USA, 1st edition, 1979.
[8]
H. Watanabe and M. Tirell, “Measurement of forces in symmetric and asymmetric interactions between diblock copolymer layers adsorbed on mica,” Macromolecules, vol. 26, no. 24, pp. 6455–6466, 1993.
[9]
R. Correa and B. Saramago, “On the calculation of disjoining pressure isotherms for nonaqueous films,” Journal of Colloid and Interface Science, vol. 270, no. 2, pp. 426–435, 2004.
[10]
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, UK, 1987.
[11]
A. Gama Goicochea and M. Brise?o, “Application of molecular dynamics computer simulations to evaluate polymer-solvent interactions,” Journal of Coatings Technology and Research, vol. 9, no. 3, pp. 279–286, 2012.
[12]
A. Gama Goicochea, “Adsorption and disjoining pressure isotherms of confined polymers using dissipative particle dynamics,” Langmuir, vol. 23, no. 23, pp. 11656–11663, 2007.
[13]
M. Daoud and C. E. Williams, Eds., Soft Matter Physics, Springer, Berlin, Germany, 1999.
[14]
S. Croll, “DLVO theory applied to TiO2 pigments and other materials in latex paints,” Progress in Organic Coatings, vol. 44, no. 2, pp. 131–146, 2002.
[15]
S. Farrokhpay, “A review of polymeric dispersant stabilisation of titania pigment,” Journal of Colloid and Interface Science, vol. 151, no. 1-2, pp. 24–32, 2009.
[16]
H. L?wen, J. Hansen, P. A. Madden, et al., “Nonlinear counterion screening in colloidal suspensions,” Journal of Chemical Physics, vol. 98, no. 4, p. 3275, 1993.
[17]
V. Morales, J. A. Anta, and S. Lago, “Integral equation prediction of reversible coagulation in charged colloidal suspensions,” Langmuir, vol. 19, no. 2, pp. 475–482, 2003.
[18]
M. Dijkstra, “Computer simulations of charge and steric stabilised colloidal suspensions,” Current Opinion in Colloid & Interface Science, vol. 6, no. 4, pp. 372–382, 2001.
[19]
C. Sagui, A. M. Somoza, and R. C. Desai, “Spinodal decomposition in an order-disorder phase transition with elastic fields,” Physical Review E, vol. 50, no. 6, pp. 4865–4879, 1994.
[20]
S. Sengupta, D. Marx, P. Nielaba, and K. Binder, “Phase diagram of a model anticlustering binary mixture in two dimensions: a semi-grand-canonical Monte Carlo study,” Physical Review E, vol. 49, no. 2, pp. 1468–1477, 1994.