%0 Journal Article %T A Model for the Stability of a TiO2 Dispersion %A Armando Gama Goicochea %J ISRN Materials Science %D 2013 %R 10.1155/2013/547608 %X A computational study of a colloidal dispersion stabilized with grafted polymer layers is presented here as a model for white, water-based paints. The interaction model includes repulsive, three-body interactions and attractive van der Waals forces. The electrostatic interactions are also studied. Stability criteria can be established for the dispersion, such as the thickness of the adsorbed polymer layers, and the quality of the solvent. Using implicit solvent molecular dynamics calculations, the spatial distribution of the pigments is obtained through the calculation of the radial distribution functions. The results show that the solvent quality and the thickness of the grafted polymer layer are key variables in the stability of the dispersion. Additionally, a structural phase transition is predicted, which is driven by the pigment concentration in the dispersion. It is argued that the predictions of this work are useful guidelines in the design of paints and coatings of current industrial interest. 1. Introduction Colloidal dispersions are complex fluids composed of one or more dispersed phases immersed in a continuous phase (solvent). A full statistical mechanical description of such a system is a nontrivial challenge because of the disparity of scales between the colloidal particles and the solvent molecules [1]. These dispersions play a very important role in contemporary societies, as they are present in fields ranging from biological systems to industrial applications. A typical example of a colloidal dispersion is a water-based, architectural paint, which is the system one should have in mind for this work. The existence of fluctuating electric dipoles among the atoms that make up the colloidal particles leads to the appearance of an attractive interaction between them, known as the van der Waals (vdW) interaction, which is however, short ranged. If no repulsive forces were present, the vdW attraction would drive particles to come close together, leading to the instability of the dispersion [2]. Alternatively, a stable colloidal dispersion is that in which colloids are homogeneously dispersed in the solvent. There are 2 popular mechanisms that help prevent irreversible colloidal instability. One is through steric effects; the other is by means of electrostatic charges present on the colloids surfaces [1]. The present work deals primarily with the former and considers that all particles are covered with a layer formed by adsorbed polymers. When the particles come close to each other, the polymers that constitute the layers start to overlap, %U http://www.hindawi.com/journals/isrn.materials.science/2013/547608/