We propose a new dense local stereo matching framework for gray-level images based on an adaptive local segmentation using a dynamic threshold. We define a new validity domain of the frontoparallel assumption based on the local intensity variations in the 4 neighborhoods of the matching pixel. The preprocessing step smoothes low-textured areas and sharpens texture edges, whereas the postprocessing step detects and recovers occluded and unreliable disparities. The algorithm achieves high stereo reconstruction quality in regions with uniform intensities as well as in textured regions. The algorithm is robust against local radiometrical differences and successfully recovers disparities around the objects edges, disparities of thin objects, and the disparities of the occluded region. Moreover, our algorithm intrinsically prevents errors caused by occlusion to propagate into nonoccluded regions. It has only a small number of parameters. The performance of our algorithm is evaluated on the Middlebury test bed stereo images. It ranks highly on the evaluation list outperforming many local and global stereo algorithms using color images. Among the local algorithms relying on the frontoparallel assumption, our algorithm is the best-ranked algorithm. We also demonstrate that our algorithm is working well on practical examples as for disparity estimation of a tomato seedling and a 3D reconstruction of a face. 1. Introduction Stereo matching has been a popular topic in computer vision for more than three decades, ever since one of the first papers appeared in 1979 [1]. Stereo images are two images of the same scene taken from different viewpoints. Dense stereo matching is a correspondence problem with the aim to find for each pixel in one image the corresponding pixel in the other image. A map of all pixel displacements in an image is a disparity map. To solve the stereo correspondence problem, it is common to introduce constraints and assumptions, which regularize the stereo correspondence problem. The most common constraints and assumptions for stereo matching are the epipolar constraint, the constant brightness or the Lambertian assumption, the uniqueness constraint, the smoothness constraint, the visibility constraint and the ordering constraint [2–4]. Stereo correspondence algorithms belong to one of two major groups, local or global, depending on whether the constraints are applied to a small local region or propagated throughout the whole image. Local stereo methods estimate the correspondence using a local support region or a window [5, 6]. Local algorithms
References
[1]
D. Marr and T. Poggio, “A computational theory of human stereo vision,” Proceedings of the Royal Society of London, vol. 204, no. 1156, pp. 301–328, 1979.
[2]
M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computational stereo,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 993–1008, 2003.
[3]
O. D. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint, MIT Press, 1993.
[4]
D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” International Journal of Computer Vision, vol. 47, no. 1–3, pp. 7–42, 2002.
[5]
A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann, “Local stereo matching using geodesic support weights,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '09), pp. 2093–2096, November 2009.
[6]
K. Zhang, J. Lu, and G. Lafruit, “Cross-based local stereo matching using orthogonal integral images,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 7, pp. 1073–1079, 2009.
[7]
P. N. Belhumeur, “A bayesian approach to binocular stereopsis,” International Journal of Computer Vision, vol. 19, no. 3, pp. 237–260, 1996.
[8]
Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1222–1239, 2001.
[9]
J. Sun, N. N. Zheng, and H. Y. Shum, “Stereo matching using belief propagation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 7, pp. 787–800, 2003.
[10]
N. Lazaros, G. C. Sirakoulis, and A. Gasteratos, “Review of stereo vision algorithms: from software to hardware,” International Journal of Optomechatronics, vol. 2, no. 4, pp. 435–462, 2008.
[11]
C. Lawrence Zitnick and T. Kanade, “A cooperative algorithm for stereo matching and occlusion detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 7, pp. 675–684, 2000.
[12]
H. Hirschmüller, P. R. Innocent, and J. Garibaldi, “Real-time correlation-based stereo vision with reduced border errors,” International Journal of Computer Vision, vol. 47, no. 1–3, pp. 229–246, 2002.
[13]
S. Damjanovi?, F. van der Heijden, and L. J. Spreeuwers, “Sparse window local stereo matching,” in Proceedings of the International Conference on Computer Vision Theory and Application (VISAPP '11), pp. 689–693, March 2011.
[14]
R. K. Gupta and S. Y. Cho, “Real-time stereo matching using adaptive binary window,” in Proceedings of the 5th International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT '10), 2010.
[15]
F. Tombari, S. Mattoccia, L. D. Stefano, and E. Addimanda, “Classification and evaluation of cost aggregation methods for stereo correspondence,” in Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition (CVPR '08), pp. 1–8, June 2008.
[16]
X. Sun, X. Mei, S. Jiao, M. Zhou, and H. Wang, “Stereo matching with reliable disparity propagation,” in Proceedings of the IEEE International Conference on 3D Digital Imaging, Modeling, Processing, Visualisation and Transmittion (3DIMPVT '11), 2011.
[17]
K. Zhang, J. Lu, and G. Lafruit, “Scalable stereo matching with locally adaptive polygon approximation,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '08), pp. 313–316, October 2008.
[18]
K. Zhang, J. Lu, G. Lafruit, R. Lauwereins, and L. Van Gool, “Accurate and efficient stereo matching with robust piecewise voting,” in Proceedings of the IEEE International Conference on Multimedia and Expo (ICME '09), pp. 93–96, IEEE Press, Piscataway, NJ, USA, July 2009.
[19]
M. Bleyer, C. Rother, and P. Kohli, “Surface stereo with soft segmentation,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '10), pp. 1570–1577, June 2010.
[20]
H. Tao, H. S. Sawhney, and R. Kumar, “A global matching framework for stereo computation,” in Proceedings of the 8th International Conference on Computer Vision, pp. 532–539, July 2001.
[21]
K. J. Yoon and I. S. Kweon, “Adaptive support-weight approach for correspondence search,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 650–656, 2006.
[22]
A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann, “Geodesic adaptive support weight approach for localstereo matching,” in Proceedings of the Computer Vision Winter Workshop, pp. 60–65, 2010.
[23]
S. Birchfield and C. Tomasi, “Depth discontinuities by pixel-to-pixel stereo,” International Journal of Computer Vision, vol. 35, no. 3, pp. 269–293, 1999.
[24]
R. Szeliski and D. Scharstein, “Sampling the Disparity Space Image,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 3, pp. 419–425, 2004.
[25]
Q. Wu, F. A. Merchant, and K. R. Castleman, Microscope Image Processing, Academic Press, 2008.
[26]
R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB, Gatesmark Publishing, 2nd edition, 2009.
[27]
Middlebury stereo, March 2012, http://vision.middlebury.edu/stereo/.
[28]
I. J. Cox, “Maximum likelihood N-camera stereo algorithm,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 733–739, June 1994.
[29]
S. Damjanovi?, F. Van Der Heijden, and L. J. Spreeuwers, “Sparse window local stereo matching,” in Proceedings of the International Workshop on Computer Vision Applications (CVA '11), pp. 83–86, 2011.
[30]
H. Hirschmüller, “Stereo processing by semiglobal matching and mutual information,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 328–341, 2008.
[31]
B. Bleyer, C. Rhemann, and C. Rother, “Patchmatch stereo—stereo matching with slanted support windows,” in Proceedings of the British Machine Vision Conference, 2011.