%0 Journal Article %T Local Stereo Matching Using Adaptive Local Segmentation %A Sanja Damjanovi£¿ %A Ferdinand van der Heijden %A Luuk J. Spreeuwers %J ISRN Machine Vision %D 2012 %R 10.5402/2012/163285 %X We propose a new dense local stereo matching framework for gray-level images based on an adaptive local segmentation using a dynamic threshold. We define a new validity domain of the frontoparallel assumption based on the local intensity variations in the 4 neighborhoods of the matching pixel. The preprocessing step smoothes low-textured areas and sharpens texture edges, whereas the postprocessing step detects and recovers occluded and unreliable disparities. The algorithm achieves high stereo reconstruction quality in regions with uniform intensities as well as in textured regions. The algorithm is robust against local radiometrical differences and successfully recovers disparities around the objects edges, disparities of thin objects, and the disparities of the occluded region. Moreover, our algorithm intrinsically prevents errors caused by occlusion to propagate into nonoccluded regions. It has only a small number of parameters. The performance of our algorithm is evaluated on the Middlebury test bed stereo images. It ranks highly on the evaluation list outperforming many local and global stereo algorithms using color images. Among the local algorithms relying on the frontoparallel assumption, our algorithm is the best-ranked algorithm. We also demonstrate that our algorithm is working well on practical examples as for disparity estimation of a tomato seedling and a 3D reconstruction of a face. 1. Introduction Stereo matching has been a popular topic in computer vision for more than three decades, ever since one of the first papers appeared in 1979 [1]. Stereo images are two images of the same scene taken from different viewpoints. Dense stereo matching is a correspondence problem with the aim to find for each pixel in one image the corresponding pixel in the other image. A map of all pixel displacements in an image is a disparity map. To solve the stereo correspondence problem, it is common to introduce constraints and assumptions, which regularize the stereo correspondence problem. The most common constraints and assumptions for stereo matching are the epipolar constraint, the constant brightness or the Lambertian assumption, the uniqueness constraint, the smoothness constraint, the visibility constraint and the ordering constraint [2¨C4]. Stereo correspondence algorithms belong to one of two major groups, local or global, depending on whether the constraints are applied to a small local region or propagated throughout the whole image. Local stereo methods estimate the correspondence using a local support region or a window [5, 6]. Local algorithms %U http://www.hindawi.com/journals/isrn.machine.vision/2012/163285/