Although the dietary approaches for stop hypertension (DASH) is well established and effective in reduction of blood pressure, in recent years, new scientific studies have indicated that specific food, nutrients isolated from foods, and even commercial food supplements are not covered by DASH. In this research, these nutrients were evaluated through a review using the databases of PubMed with the terms “dietary supplements and blood pressure” without a limit of date. Vitamins (C, D, and E) and minerals (potassium and copper) promote the greatest reductions in BP, around 7 to 14?mmHg for systolic blood pressure (SBP) and 4 to 5?mmHg for diastolic blood pressure (PAD). Antioxidants reduce SBP and DBP in 3 to 27?mmHg and 3 to 4?mmHg, respectively. Among the amino acids, only L-arginine was effective in promoting reduction of 20 and 15?mmHg for SBP and DBP, respectively. In food, the grape juice promoted the highest reductions in SBP and DBP, around 8?mmHg and 6?mmHg, respectively. Finally, for commercial supplements, the fermented milk product GAIOR, the grain salba, and fish oil promoted reductions of about 4,4; 6; and 5?mmHg and 3,4; 3; and 1?mmHg for SBP and DBP, respectively. Therefore, new nutrients, foods, and supplements can enrich the recommendations of the DASH. 1. Introduction The degenerative diseases are the most prevalent in the world today, representing one of the greatest public health problems in the actuality [1]. According to estimates of the World Health Organization [2], these diseases are responsible for about 60% of all deaths worldwide, and 46% of the global burden of diseases affecting the population. Among them predominate obesity (12% of world population) [2], diabetes (10% of world population) [3], and dyslipidemia (7.9% of deaths worldwide) [2]. The main cause of these comorbidities have been the stress, sedentary lifestyle and eating habits. All of these diseases are potentially able to promote increased blood pressure. While the fatty produced substances such as angiotensinogen and proinflammatory contribute to elevate blood pressure [4]; hyperlipidemia results in excessive oxidation of low density lipoproteins with subsequent atherosclerotic process [5]. The state of diabetes promotes strong oxidative stress that contributes unequivocally to endothelial dysfunction, inflammation, and vasoconstriction which increases blood pressure [6]. Therefore, these three states of morbidity are among the risk factors of hypertension that are, among all chronic diseases, the most prevalent, affecting about 30% of the world population [2],
References
[1]
M. C. Lewicki, P. G. Kerr, and K. R. Polkinghorne, “Blood pressure and blood volume: acute and chronic considerations in hemodialysis,” Seminars in Dialysis, vol. 26, no. 1, pp. 62–72, 2013.
[2]
World Health Organization (WHO), “Obesity and overweight. Disponível,” Fact Sheet 311, 2012, http://www.who.int/mediacentre/factsheets/fs311/en/.
[3]
American Diabetes Association, “Third-party reimbursement for diabetes care, self-management education, and supplies,” Diabetes Care, vol. 26, 1, pp. S143–S144, 2003.
[4]
D. R. Velez, M. Guruju, G. Vinukonda, A. Prater, A. Kumar, and S. M. Williams, “Angiotensinogen promoter sequence variants in essential hypertension,” The American Journal of Hypertension, vol. 19, no. 12, pp. 1278–1285, 2006.
[5]
Y. Yasunobu, K. Hayashi, T. Shingu, T. Yamagata, G. Kajiyama, and M. Kambe, “Coronary atherosclerosis and oxidative stress as reflected by autoantibodies against oxidized low-density lipoprotein and oxysterols,” Atherosclerosis, vol. 155, no. 2, pp. 445–453, 2001.
[6]
M. T. Schram, N. Chaturvedi, C. Schalkwijk et al., “Vascular risk factors and markers of endothelial function as determinants of inflammatory markers in type 1 diabetes: the EURODIAB prospective complications study,” Diabetes Care, vol. 26, no. 7, pp. 2165–2173, 2003.
[7]
L. F. Masson, G. McNeill, and A. Avenell, “Genetic variation and the lipid response to dietary intervention: a systematic review,” The American Journal of Clinical Nutrition, vol. 77, no. 5, pp. 1098–1111, 2003.
[8]
L. P. Svetkey, T. J. Moore, D. G. Simons-Morton et al., “Angiotensinogen genotype and blood pressure response in the Dietary Approaches to Stop Hypertension (DASH) study,” Journal of Hypertension, vol. 19, no. 11, pp. 1949–1956, 2001.
[9]
P. R. Conlin, D. Chow, E. R. Miller III et al., “The effect of dietary patterns on blood pressure control in hypertensive patients: results from the Dietary Approaches to Stop Hypertension (DASH) trial,” The American Journal of Hypertension, vol. 13, no. 9, pp. 949–955, 2000.
[10]
J. A. Blumenthal, M. A. Babyak, A. Hinderliter et al., “Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: the ENCORE study,” Archives of Internal Medicine, vol. 170, no. 2, pp. 126–135, 2010.
[11]
S. E. Berry, U. Z. Mulla, P. J. Chowienczyk, and T. A. B. Sanders, “Increased potassium intake from fruit and vegetables or supplements does not lower blood pressure or improve vascular function in UK men and women with early hypertension: a randomised controlled trial,” The British Journal of Nutrition, vol. 104, no. 12, pp. 1839–1847, 2010.
[12]
J. A. Sugden, J. I. Davies, M. D. Witham, A. D. Morris, and A. D. Struthers, “Vitamin D improves endothelial function in patients with Type 2 diabetes mellitus and low vitamin D levels,” Diabetic Medicine, vol. 25, no. 3, pp. 320–325, 2008.
[13]
G. C. Major, F. Alarie, J. Doré, S. Phouttama, and A. Tremblay, “Supplementation with calcium + vitamin D enhances the beneficial effect of weight loss on plasma lipid and lipoprotein concentrations,” The American Journal of Clinical Nutrition, vol. 85, no. 1, pp. 54–59, 2007.
[14]
N. C. Ward, J. H. Wu, M. W. Clarke et al., “The effect of vitamin E on blood pressure in individuals with type 2 diabetes: a randomized, double-blind, placebo-controlled trial,” Journal of Hypertension, vol. 25, no. 1, pp. 227–234, 2007.
[15]
Y. Plantinga, L. Ghiadoni, A. Magagna et al., “Supplementation with vitamins C and E improves arterial stiffness and endothelial function in essential hypertensive patients,” The American Journal of Hypertension, vol. 20, no. 4, pp. 392–397, 2007.
[16]
M. S. Farvid, M. Jalali, F. Siassi, N. Saadat, and M. Hosseini, “The impact of vitamins and/or mineral supplementation on blood pressure in type 2 diabetes,” Journal of the American College of Nutrition, vol. 23, no. 3, pp. 272–279, 2004.
[17]
N. C. Ward, J. M. Hodgson, K. D. Croft, V. Burke, L. J. Beilin, and I. B. Puddey, “Effects of vitamin C and grape-seed polyphenols on blood pressure in treated hypertensive individuals: results of a randomised double blind, placebo-controlled trial,” Asia Pacific Journal of Clinical Nutrition, vol. 12, supplement 18, 2003.
[18]
M. Rodríguez-Morán and F. Guerrero-Romero, “Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial,” Diabetes Care, vol. 26, no. 4, pp. 1147–1152, 2003.
[19]
O. M. Alarcón, Y. Guerrero, M. Ramírez de Fernández et al., “Efecto de la suplementación con cobre sobre los valores de presión arterial en pacientes con hipertensión moderada estable,” Archivos Latinoamericanos de Nutricion, vol. 53, no. 3, pp. 271–276, 2003.
[20]
B. A. Mullan, I. S. Young, H. Fee, and D. R. McCance, “Ascorbic acid reduces blood pressure and arterial stiffness in type 2 diabetes,” Hypertension, vol. 40, no. 6, pp. 804–809, 2002.
[21]
G. Palumbo, F. Avanzini, C. Alli et al., “Effects of vitamin E on clinic and ambulatory blood pressure in treated hypertensive patients,” The American Journal of Hypertension, vol. 13, no. 5, pp. 564–567, 2000.
[22]
A. Gazis, D. J. White, S. R. Page, and J. R. Cockcroft, “Effect of oral vitamin E (α-tocopherol) supplementation on vascular endothelial function in type 2 diabetes mellitus,” Diabetic Medicine, vol. 16, no. 4, pp. 304–311, 1999.
[23]
Y. Kawano, H. Yoshimi, H. Matsuoka, S. Takishita, and T. Omae, “Calcium supplementation in patients with essential hypertension: assessment by office, home and ambulatory blood pressure,” Journal of Hypertension, vol. 16, no. 11, pp. 1693–1699, 1998.
[24]
H. W. de Valk, R. Verkaaik, H. J. M. van Rijn, R. A. Geerdink, and A. Struyvenberg, “Oral magnesium supplementation in insulin-requiring Type 2 diabetic patients,” Diabetic Medicine, vol. 15, no. 6, pp. 503–507, 1998.
[25]
A. Siani, P. Strazzullo, and L. Russo, “Controlled trial of long term oral potassium supplements in patients with mild hypertension,” The British Medical Journal, vol. 294, no. 6585, pp. 1453–1456, 1987.
[26]
S. Egert, A. Bosy-Westphal, J. Seiberl et al., “Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study,” British Journal of Nutrition, vol. 102, no. 7, pp. 1065–1074, 2009.
[27]
N. C. Ward, J. M. Hodgson, K. D. Croft, V. Burke, L. J. Beilin, and I. B. Puddey, “The combination of vitamin C and grape-seed polyphenols increases blood pressure: a randomized, double-blind, placebo-controlled trial,” Journal of Hypertension, vol. 23, no. 2, pp. 427–434, 2005.
[28]
M. Aviram and B. Fuhrman, “Wine flavonoids protect against LDL oxidation and atherosclerosis,” Annals of the New York Academy of Sciences, vol. 957, pp. 146–161, 2002.
[29]
J. M. Hodgson, G. F. Watts, D. A. Playford, V. Burke, and K. D. Croft, “Coenzyme Q10 improves blood pressure and glycaemic control: a controlled trial in subjects with type 2 diabetes,” European Journal of Clinical Nutrition, vol. 56, no. 11, pp. 1137–1142, 2002.
[30]
B. E. Burke, R. Neuenschwander, and R. D. Olson, “Randomized, double-blind, placebo-controlled trial of coenzyme Q10 in isolated systolic hypertension,” Southern Medical Journal, vol. 94, no. 11, pp. 1112–1117, 2001.
[31]
E. H. Lee, J. E. Park, Y. J. Choi, K. B. Huh, and W. Y. Kim, “A randomized study to establish the effects of spirulina in type 2 diabetes mellitus patients,” Nutrition Research and Practice, vol. 2, no. 4, pp. 295–300, 2008.
[32]
P. V. Torres-Duran, A. Ferreira-Hermosillo, and M. A. Juarez-Oropeza, “Antihyperlipemic and antihypertensive effects of Spirulina maxima in an open sample of mexican population: a preliminary report,” Lipids in Health and Disease, vol. 6, article 33, 2007.
[33]
S. G. West, A. Likos-Krick, P. Brown, and F. Mariotti, “Oral L-arginine improves hemodynamic response to stress and reduces plasma homocysteine in hypercholesterolemic men,” Journal of Nutrition, vol. 135, no. 2, pp. 212–217, 2005.
[34]
G. Duda, J. Suliburska, and D. Pupek-Musialik, “Effects of short-term garlic supplementation on lipid metabolism and antioxidant status in hypertensive adults,” Pharmacological Reports, vol. 60, no. 2, pp. 163–170, 2008.
[35]
S. Mizushima, K. Ohshige, J. Watanabe et al., “Randomized controlled trial of sour milk on blood pressure in borderline hypertensive men,” The American Journal of Hypertension, vol. 17, no. 8, pp. 701–706, 2004.
[36]
Y. K. Park, J. S. Kim, and M. H. Kang, “Concord grape juice supplementation reduces blood pressure in Korean hypertensive men: double-blind, placebo controlled intervention trial,” BioFactors, vol. 22, no. 1–4, pp. 145–147, 2004.
[37]
V. Burke, J. M. Hodgson, L. J. Beilin, N. Giangiulioi, P. Rogers, and I. B. Puddey, “Dietary protein and soluble fiber reduce ambulatory blood pressure in treated hypertensives,” Hypertension, vol. 38, no. 4, pp. 821–826, 2001.
[38]
V. Vuksan, D. Whitham, J. L. Sievenpiper et al., “Supplementation of conventional therapy with the novel grain salba (Salvia hispanica L.) improves major and emerging cardiovascular risk factors in type 2 diabetes: results of a randomized controlled trial,” Diabetes Care, vol. 30, no. 11, pp. 2804–2810, 2007.
[39]
G. K. Paschos, F. Magkos, D. B. Panagiotakos, V. Votteas, and A. Zampelas, “Dietary supplementation with flaxseed oil lowers blood pressure in dyslipidaemic patients,” European Journal of Clinical Nutrition, vol. 61, no. 10, pp. 1201–1206, 2007.
[40]
S. Wang, A.-Q. Ma, S.-W. Song, Q.-H. Quan, X.-F. Zhao, and X.-H. Zheng, “Fish oil supplementation improves large arterial elasticity in overweight hypertensive patients,” European Journal of Clinical Nutrition, vol. 62, no. 12, pp. 1426–1431, 2008.
[41]
T. Iwata, T. Kamegai, Y. Yamauchi-Sato et al., “Safety of dietary conjugated linoleic acid (CLA) in a 12-weeks trial in healthy overweight Japanese male volunteers,” Journal of Oleo Science, vol. 56, no. 10, pp. 517–525, 2007.
[42]
M. Svensson, J. H. Christensen, J. S?lling, and E. B. Schmidt, “The effect of n-3 fatty acids on plasma lipids and lipoproteins and blood pressure in patients with CRF,” The American Journal of Kidney Diseases, vol. 44, no. 1, pp. 77–83, 2004.
[43]
D. J. A. Jenkins, C. W. C. Kendall, A. Marchie et al., “Dose response of almonds on coronary heart disease risk factors: blood lipids, oxidized low-density lipoproteins, lipoprotein(a), homocysteine, and pulmonary nitric oxide: a randomized, controlled, crossover trial,” Circulation, vol. 106, no. 11, pp. 1327–1332, 2002.
[44]
L. Agerholm-Larsen, A. Raben, N. Haulrik, A. S. Hansen, M. Manders, and A. Astrup, “Effect of 8 week intake of probiotic milk products on risk factors for cardiovascular diseases,” European Journal of Clinical Nutrition, vol. 54, no. 4, pp. 288–297, 2000.
[45]
M. Shargorodsky, O. Debby, Z. Matas, and R. Zimlichman, “Effect of long-term treatment with antioxidants (vitamin C, vitamin E, coenzyme Q10 and selenium) on arterial compliance, humoral factors and inflammatory markers in patients with multiple cardiovascular risk factors,” Nutrition and Metabolism, vol. 7, article 55, 2010.
[46]
Y. Minamiyama, S. Takemura, Y. Bito et al., “Supplementation of α-tocopherol improves cardiovascular risk factors via the insulin signalling pathway and reduction of mitochondrial reactive oxygen species in type II diabetic rats,” Free Radical Research, vol. 42, no. 3, pp. 261–271, 2008.
[47]
K. K. Griendling and G. A. FitzGerald, “Oxidative Stress and Cardiovascular Injury. Part II: animal and Human Studies,” Circulation, vol. 108, no. 17, pp. 2034–2040, 2003.
[48]
S. Devaraj, A. Harris, and I. Jialal, “Modulation of monocyte-macrophage function with α-tocopherol: implications for atherosclerosis,” Nutrition Reviews, vol. 60, no. 1, pp. 8–14, 2002.
[49]
M. G. Traber and J. F. Stevens, “Vitamins C and E: beneficial effects from a mechanistic perspective,” Free Radical Biology and Medicine, vol. 51, no. 5, pp. 1000–1013, 2011.
[50]
M. D. Fotherby, J. C. Williams, L. A. Forster, P. Craner, and G. A. Ferns, “Effect of vitamin C on ambulatory blood pressure and plasma lipids in older persons,” Journal of Hypertension, vol. 18, no. 4, pp. 411–415, 2000.
[51]
S. J. Duffy, N. Gokce, M. Holbrook et al., “Treatment of hypertension with ascorbic acid,” The Lancet, vol. 354, no. 9195, pp. 2048–2049, 1999.
[52]
J. Lykkesfeldt and H. E. Poulsen, “Is vitamin C supplementation beneficial? Lessons learned from randomised controlled trials,” The British Journal of Nutrition, vol. 103, no. 9, pp. 1251–1259, 2010.
[53]
N. Gokce, J. F. Keaney Jr., B. Frei et al., “Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease,” Circulation, vol. 99, no. 25, pp. 3234–3240, 1999.
[54]
P. M. Kris-Etherton, A. H. Lichtenstein, B. V. Howard, D. Steinberg, and J. L. Witztum, “Antioxidant vitamin supplements and cardiovascular disease,” Circulation, vol. 110, no. 5, pp. 637–641, 2004.
[55]
E. R. Miller, L. A. Lawrence, O. A. Levander, and D. M. Levine, “The effect of antioxidant vitamin supplementation on traditional cardiovascular risk factors,” Journal of Cardiovascular Risk, vol. 4, no. 1, pp. 19–24, 1997.
[56]
H. Han-Yao, “A factorial trial of vitamin C and vitamin E supplementation: no effect on blood pressure, but synergy in lowering total and LDL cholesterol,” in Proceedings of the 38th Annual Conference on Cardiovascular Disease Epidemiology and prevention, 1998.
[57]
R. S. Gupta, E. S. Gupta, B. K. Dhakal, A. R. Thakur, and J. Ahnn, “Vitamin C and Vitamin E protect the rat testes from cadmium-induced reactive oxygen species,” Molecules and Cells, vol. 17, no. 1, pp. 132–139, 2004.
[58]
H. Cai and D. G. Harrison, “Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress,” Circulation Research, vol. 87, no. 10, pp. 840–844, 2000.
[59]
G. Zalba, G. San José, M. U. Moreno et al., “Oxidative stress in arterial hypertension: role of NAD(P)H oxidase,” Hypertension, vol. 38, no. 6, pp. 1395–13959, 2001.
[60]
M. F. Holick, “Vitamin D: important for prevention of osteoporosis, cardiovascular heart disease, type 1 diabetes, autoimmune diseases, and some cancers,” Southern Medical Journal, vol. 98, no. 10, pp. 1024–1027, 2005.
[61]
M. Pfeifer, B. Begerow, H. W. Minne, D. Nachtigall, and C. Hansen, “Effects of a short-term vitamin D3 and calcium supplementation on blood pressure and parathyroid hormone levels in elderly women,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 4, pp. 1633–1637, 2001.
[62]
D. Zehnder, R. Bland, E. A. Walker et al., “Expression of 25-hydroxyvitamin D3-1α-hydroxylase in the human kidney,” Journal of the American Society of Nephrology, vol. 10, no. 12, pp. 2465–2473, 1999.
[63]
C. A. Papaharalambus and K. K. Griendling, “Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury,” Trends in Cardiovascular Medicine, vol. 17, no. 2, pp. 48–54, 2007.
[64]
T. J. Kizhakekuttu and M. E. Widlansky, “Natural antioxidants and hypertension: promise and challenges,” Cardiovascular Therapeutics, vol. 28, no. 4, pp. e20–e32, 2010.
[65]
I. C. W. Arts, D. R. Jacobs Jr., L. J. Harnack, M. Gross, and A. R. Folsom, “Dietary catechins in relation to coronary heart disease death among postmenopausal women,” Epidemiology, vol. 12, no. 6, pp. 668–675, 2001.
[66]
I. C. Arts and P. C. Hollman, “Polyphenols and disease risk in epidemiologic studies,” The American Journal of Clinical Nutrition, vol. 81, no. 1, pp. 317S–325S, 2005.
[67]
U. Peters, C. Poole, and L. Arab, “Does tea affect cardiovascular disease? A meta-analysis,” The American Journal of Epidemiology, vol. 154, no. 6, pp. 495–503, 2001.
[68]
L. A. Bazzano, J. He, L. G. Ogden et al., “Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study,” The American Journal of Clinical Nutrition, vol. 76, no. 1, pp. 93–99, 2002.
[69]
S. B. Lotito and B. Frei, “Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon?” Free Radical Biology and Medicine, vol. 41, no. 12, pp. 1727–1746, 2006.
[70]
P. J. Mink, C. G. Scrafford, L. M. Barraj et al., “Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women,” The American Journal of Clinical Nutrition, vol. 85, no. 3, pp. 895–909, 2007.
[71]
A. Cherubini, C. Ruggiero, C. Morand et al., “Dietary antioxidants as potential pharmacological agents for ischemic stroke,” Current Medicinal Chemistry, vol. 15, no. 12, pp. 1236–1248, 2008.
[72]
K. B. Pandey and S. I. Rizvi, “Plant polyphenols as dietary antioxidants in human health and disease,” Oxidative Medicine and Cellular Longevity, vol. 2, no. 5, pp. 270–278, 2009.
[73]
T. Baster and C. Baster-Brooks, “Exercise and hypertension,” Australian Family Physician, vol. 34, no. 6, pp. 419–424, 2005.
[74]
K. Overvad, B. Diamant, L. Holm, G. H?lmer, S. A. Mortensen, and S. Stender, “Coenzyme Q10 in health and disease,” European Journal of Clinical Nutrition, vol. 53, no. 10, pp. 764–770, 1999.
[75]
T. Wallerath, G. Deckert, T. Ternes et al., “Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase,” Circulation, vol. 106, no. 13, pp. 1652–1658, 2002.
[76]
C. Heiss, A. Dejam, P. Kleinbongard, T. Schewe, H. Sies, and M. Kelm, “Vascular effects of cocoa rich in Flavan-3-ols,” Journal of the American Medical Association, vol. 290, no. 8, pp. 1030–1031, 2003.
[77]
E. Anter, S. R. Thomas, E. Schulz, O. M. Shapira, J. A. Vita, and J. F. Keaney Jr., “Activation of endothelial nitric-oxide synthase by the p38 MAPK in response to black tea polyphenols,” Journal of Biological Chemistry, vol. 279, no. 45, pp. 46637–46643, 2004.
[78]
J. F. Leikert, T. R. R?thel, P. Wohlfart, V. Cheynier, A. M. Vollmar, and V. M. Dirsch, “Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells,” Circulation, vol. 106, no. 13, pp. 1614–1617, 2002.
[79]
C. A. Schmitt and V. M. Dirsch, “Modulation of endothelial nitric oxide by plant-derived products,” Nitric Oxide, vol. 21, no. 2, pp. 77–91, 2009.
[80]
J. C. Stoclet, T. Chataigneau, M. Ndiaye et al., “Vascular protection by dietary polyphenols,” European Journal of Pharmacology, vol. 500, no. 1–3, pp. 299–313, 2004.
[81]
M. Aviram and L. Dornfeld, “Pomegranate juice consumption inhibits serum angiotensin converting enzyme activity and reduces systolic blood pressure,” Atherosclerosis, vol. 158, no. 1, pp. 195–198, 2001.
[82]
Y. J. Jeong, Y. J. Choi, H. M. Kwon et al., “Differential inhibition of oxidized LDL-induced apoptosis in human endothelial cells treated with different flavonoids,” The British Journal of Nutrition, vol. 93, no. 5, pp. 581–591, 2005.
[83]
B. Fuhrman, N. Volkova, R. Coleman, and M. Aviram, “Grape powder polyphenols attenuate atherosclerosis development in apolipoprotein E deficient (E0) mice and reduce macrophage atherogenicity,” Journal of Nutrition, vol. 135, no. 4, pp. 722–728, 2005.
[84]
A. Ludwig, M. Lorenz, N. Grimbo et al., “The tea flavonoid epigallocatechin-3-gallate reduces cytokine-induced VCAM-1 expression and monocyte adhesion to endothelial cells,” Biochemical and Biophysical Research Communications, vol. 316, no. 3, pp. 659–665, 2004.
[85]
J. M. Hodgson and K. D. Croft, “Dietary flavonoids: effects on endothelial function and blood pressure,” Journal of the Science of Food and Agriculture, vol. 86, no. 15, pp. 2492–2498, 2006.
[86]
Y. Guan, H. Y. Zhao, X. F. Ding, and Y. Y. Zhu, “Analysis of the contents of elements in spinrulina from different producing areas,” Guang Pu Xue Yu Guang Pu Fen Xi, vol. 27, no. 5, pp. 1029–1031, 2007.
[87]
J. P. Lekakis, S. Papathanassiou, T. G. Papaioannou et al., “Oral L-arginine improves endothelial dysfunction in patients with essential hypertension,” International Journal of Cardiology, vol. 86, no. 2-3, pp. 317–323, 2002.
[88]
Z. Khan, P. Bhadouria, and P. S. Bisen, “Nutritional and therapeutic potential of Spirulina,” Current Pharmaceutical Biotechnology, vol. 6, no. 5, pp. 373–379, 2005.
[89]
D. Mascher, M. C. Paredes-Carbajal, P. V. Torres-Durán, J. Zamora-González, J. C. Díaz-Zagoya, and M. A. Juárez-Oropeza, “Ethanolic extract of Spirulina maxima alters the vasomotor reactivity of aortic rings from obese rats,” Archives of Medical Research, vol. 37, no. 1, pp. 50–57, 2006.
[90]
P. Parikh, U. Mani, and U. Iyer, “Role of Spirulina in the control of glycemia and lipidemia in type 2 diabetes mellitus,” Journal of Medicinal Food, vol. 4, no. 4, pp. 193–199, 2001.
[91]
G. Hsiao, P. O. H. Chou, M. Y. Shen, D. S. Chou, C. H. Lin, and J. R. Sheu, “C-phycocyanin, a very potent and novel platelet aggregation inhibitor from Spirulina platensis,” Journal of Agricultural and Food Chemistry, vol. 53, no. 20, pp. 7734–7740, 2005.
[92]
V. Martina, A. Masha, V. R. Gigliardi et al., “Long-term n-acetylcysteine and l-arginine administration reduces endothelial activation and systolic blood pressure in hypertensive patients with type 2 diabetes,” Diabetes Care, vol. 31, no. 5, pp. 940–944, 2008.
[93]
K. Rytlewski, R. Olszanecki, R. Korbut, and Z. Zdebski, “Effects of prolonged oral supplementation with L-arginine on blood pressure and nitric oxide synthesis in preeclampsia,” European Journal of Clinical Investigation, vol. 35, no. 1, pp. 32–37, 2005.
[94]
Y. Higashi and M. Yoshizumi, “Exercise and endothelial function: role of endothelium-derived nitric oxide and oxidative stress in healthy subjects and hypertensive patients,” Pharmacology and Therapeutics, vol. 102, no. 1, pp. 87–96, 2004.
[95]
V. Dhawan and S. Jain, “Effect of garlic supplementation on oxidized low density lipoproteins and lipid peroxidation in patients of essential hypertension,” Molecular and Cellular Biochemistry, vol. 266, no. 1-2, pp. 109–115, 2004.
[96]
I. Durak, M. Kavutcu, B. Ayta? et al., “Effects of garlic extract consumption on blood lipid and oxidant/antioxidant parameters in humans with high blood cholesterol,” Journal of Nutritional Biochemistry, vol. 15, no. 6, pp. 373–377, 2004.
[97]
L. D. Brace, “Cardiovascular benefits of garlic (Allium sativum L),” The Journal of Cardiovascular Nursing, vol. 16, no. 4, pp. 33–49, 2002.
[98]
R. Gebhardt and H. Beck, “Differential inhibitory effects of garlic-derived organosulfur compounds on cholesterol biosynthesis in primary rat hepatocyte cultures,” Lipids, vol. 31, no. 12, pp. 1269–1276, 1996.
[99]
S. Warshafsky, R. S. Kamer, and S. L. Sivak, “Effect of garlic on total serum cholesterol: a meta-analysis,” Annals of Internal Medicine, vol. 119, no. 7 I, pp. 599–605, 1993.
[100]
L. H. Opie and S. Lecour, “The red wine hypothesis: from concepts to protective signalling molecules,” European Heart Journal, vol. 28, no. 14, pp. 1683–1693, 2007.
[101]
M. Diebolt, B. Bucher, and R. Andriantsitohaina, “Wine polyphenols decrease blood pressure, improve NO vasodilatation, and induce gene expression,” Hypertension, vol. 38, no. 2, pp. 159–165, 2001.
[102]
Y. Nakamura, N. Yamamoto, K. Sakai, and T. Takano, “Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme,” Journal of Dairy Science, vol. 78, no. 6, pp. 1253–1257, 1995.
[103]
M. Feinleib, C. Lenfant, and S. A. Miller, “Hypertension and calcium,” Science, vol. 226, no. 4673, pp. 384–389, 1984.
[104]
D. Grassi, S. Necozione, C. Lippi et al., “Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives,” Hypertension, vol. 46, no. 2, pp. 398–405, 2005.
[105]
A. Figueroa, M. A. Sanchez-Gonzalez, A. Wong, and B. H. Arjmandi, “Effects of dark chocolate on blood pressure in patients with hypertension,” The American Journl of Hypertension, vol. 25, no. 6, pp. 649–643, 2012.
[106]
M. H. Williams, “Dietary supplements and sports performance: introduction and vitamins,” Journal of the International Society of Sports Nutrition, vol. 1, no. 2, pp. 1–6, 2004.
[107]
J. Sundgot-Borgen, B. Berglund, and M. K. Torstveit, “Nutritional supplements in Norwegian elite athletes: impact of international ranking and advisors,” Scandinavian Journal of Medicine and Science in Sports, vol. 13, no. 2, pp. 138–144, 2003.