One of the major contaminants of water bodies is dye pollutants that come from textile, paper, and leather industries. In this study, Casuarina equisetifolia needle (CEN) is used to remove methyl violet 2B (MV) from aqueous solutions. Batch experiments were done to investigate the contact time, effect of pH, initial dye concentrations, and temperature. Langmuir and Freundlich isotherm models were used to describe the interaction between the adsorbate and adsorbent. The sorption mechanism was described using Lagergren 1st order, pseudo 2nd order, and Weber-Morris intraparticle diffusion models. FTIR spectroscopy was used to analyze the functional groups of CEN before and after sorption with MV. Optimal conditions were found to be at room temperature with 2?h contact time and no pH adjustment was needed. Experimental data was best fitted onto Langmuir model with maximum adsorption capacity of 164.99?mg/g, while pseudo 2nd order best described the experimental data for the kinetics study. Thermodynamic parameters such as change in Gibbs free energy ( ), enthalpy ( ), and entropy ( ) were also investigated. 1. Introduction Synthetic dyes are inexpensive and widely used in textile industry, food, and cosmetics as well as dyeing plastic, rubber, leather, and paper materials [1, 2]. Discharging industrial wastewater containing such dyes to aquatic environment can contaminate surface water bodies and groundwater. This can result in serious damage to the aquatic flora and fauna as dyes may be toxic and mutagenic [3, 4]. Damages can be extended to the soil through leachant and irrigated water. Common methods used by the industry to treat the wastewater include adsorption, filtration, reverse osmosis, photodegradation, biodegradation, ion-exchange method, coagulation, and chemical treatments by reduction, oxidation, and neutralization [2, 5, 6]. Biosorption is a preferred method due to the usage of low-cost materials, low energy usage, and high efficiency [2]. Material that can be regenerated and reused is considered as an added advantage. In biosorption process, dye molecule is adsorbed onto the biomass through physical or chemical adsorption and thus avoids the formation of degraded dye products which may be more harmful than the dye itself. Biosorption via “renewable biomass” is a key advantage over nonrenewable adsorbents such as clay, peat, zeolite, lignite, and some forms of activated carbons [7]. Methyl violet 2B (MV), is a basic dye, with high brilliant and intensity and is highly used in the industry. Molecular structure of MV is shown in Figure 1.
References
[1]
B. H. Hameed, “Equilibrium and kinetic studies of methyl violet sorption by agricultural waste,” Journal of Hazardous Materials, vol. 154, no. 1–3, pp. 204–212, 2008.
[2]
J. Duan, R. Liu, T. Chen, B. Zhang, and J. Liu, “Halloysite nanotube-Fe3O4 composite for removal of methyl violet from aqueous solutions,” Desalination, vol. 293, pp. 46–52, 2012.
[3]
R.-K. Xu, S.-C. Xiao, J.-H. Yuan, and A.-Z. Zhao, “Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues,” Bioresource Technology, vol. 102, no. 22, pp. 10293–10298, 2011.
[4]
A. N. Kabra, R. V. Khandare, T. R. Waghmode, and S. P. Govindwar, “Phytoremediation of textile effluent and mixture of structurally different dyes by Glandularia pulchella (Sweet) Tronc,” Chemosphere, vol. 87, no. 3, pp. 265–272, 2012.
[5]
Y. M. Slokar and A. Majcen Le Marechal, “Methods of decoloration of textile wastewaters,” Dyes and Pigments, vol. 37, no. 4, pp. 335–356, 1998.
[6]
J.-S. Wu, C.-H. Liu, K. H. Chu, and S.-Y. Suen, “Removal of cationic dye methyl violet 2B from water by cation exchange membranes,” Journal of Membrane Science, vol. 309, no. 1-2, pp. 239–245, 2008.
[7]
K. A. Gallagher, M. G. Healy, and S. J. Allen, “Biosorption of synthetic dye and metal ions from aqueous effluents using fungal biomass: studies in environmental science,” in Proceedings of the 3rd Biennial Meeting of the International Society for Environmental Biotechnology, Global Environmental Biotechnology, D. L. Wise, Ed., pp. 27–50, Elsevier, 1997.
[8]
A. Vachálková, L. Novotny, and M. Blesová, “Polarographic reduction of some triphenylmethane dyes and their potential carcinogenic activity,” Neoplasma, vol. 43, no. 2, pp. 113–117, 1996.
[9]
L. B. L. Lim, N. Priyantha, D. T. B. Tennakoon, and M. K. Dahri, “Biosorption of cadmium(II) and copper(II) ions from aqueous solution by core of Artocarpus odoratissimus,” Environmental Science and Pollution Research, vol. 19, pp. 3250–3256, 2012.
[10]
N. Priyantha, L. B. L. Lim, M. K. Dahri, and D. T. B. Tennakoon, “Dragon fruit skin as a potential low-cost biosorbent for the removal of manganese(II) ions,” Journal of Applied Sciences in Environmental Sanitation, vol. 8, no. 3, pp. 179–188, 2013.
[11]
L. B. L. Lim, N. Priyantha, D. T. B. Tennakoon, and T. Zehra, “Sorption characteristics of Peat of Brunei Darussalam—II: interaction of aqueous copper(II) species with raw and processed peat,” Journal of Ecotechnology Research, vol. 17, no. 1, pp. 45–49, 2013.
[12]
R.-L. Tseng, F.-C. Wu, and R.-S. Juang, “Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons,” Carbon, vol. 41, no. 3, pp. 487–495, 2003.
[13]
Y. Gou, S. Yang, W. Fu et al., “Adsoprtion of malachite green on micro- and mesoporous rice husk-based active carbon,” Dyes and Pigments, vol. 56, no. 3, pp. 219–229, 2003.
[14]
N. Kannan and M. M. Sundaram, “Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study,” Dyes and Pigments, vol. 51, no. 1, pp. 25–40, 2001.
[15]
P. K. Malik, “Use of activated carbons prepared from sawdust and rice-husk for adsoprtion of acid dyes: a case study of acid yellow 36,” Dyes and Pigments, vol. 56, no. 3, pp. 239–249, 2003.
[16]
M. M. Mohamed, “Acid dye removal: comparison of surfactant-modified mesoporous FSM-16 with activated carbon derived from rice husk,” Journal of Colloid and Interface Science, vol. 272, no. 1, pp. 28–34, 2004.
[17]
R.-S. Juang, F.-C. Wu, and R.-L. Tseng, “Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption,” Colloids and Surfaces A, vol. 201, no. 1–3, pp. 191–199, 2002.
[18]
G. Annadurai, R.-S. Juang, and D.-J. Lee, “Use of cellulose-based wastes for adsorption of dyes from aqueous solutions,” Journal of Hazardous Materials, vol. 92, no. 3, pp. 263–274, 2002.
[19]
R. Rajeshwarisivaraj, S. Sivakumar, P. Senthilkumar, and V. Subburam, “Carbon from Cassava peel, an agricultural waste, as an adsorbent in the removal of dyes and metal ions from aqueous solution,” Bioresource Technology, vol. 80, no. 3, pp. 233–235, 2001.
[20]
P. Jano?, H. Buchtová, and M. Ryznarová, “Sorption of dyes from aqueous solutions onto fly ash,” Water Research, vol. 37, no. 20, pp. 4938–4944, 2003.
[21]
M. Otero, F. Rozada, L. F. Calvo, A. I. García, and A. Morán, “Kinetic and equilibrium modelling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges,” Biochemical Engineering Journal, vol. 15, no. 1, pp. 59–68, 2003.
[22]
K. Okada, N. Yamamoto, Y. Kameshima, and A. Yasumori, “Adsorption properties of activated carbon from waste newspaper prepared by chemical and physical activation,” Journal of Colloid and Interface Science, vol. 262, no. 1, pp. 194–199, 2003.
[23]
A. El Nemr, A. El Sikaily, A. Khaled, and O. Abdelwahab, “Removal of toxic chromium(VI) from aqueous solution by activated carbon using Casuarina equisetifolia,” Chemistry and Ecology, vol. 23, no. 2, pp. 119–129, 2007.
[24]
K. Ranganathan, “Chromium removal by activated carbons prepared from Casurina equisetifolia leaves,” Bioresource Technology, vol. 73, no. 2, pp. 99–103, 2000.
[25]
I. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” The Journal of the American Chemical Society, vol. 40, no. 9, pp. 1361–1403, 1918.
[26]
H. M. F. Freundlich, “Uber die adsorption in losungen,” Zeitschrift fur Physikalische Chemie-Leipzig, vol. 57, pp. 385–470, 1906.
[27]
S. Lagergren, “Zur theorie der sogenannten adsorption gelster stoffe,” Kungliga Svenska Vetenskapsakademiens Handlingar, vol. 24, pp. 1–39, 1989.
[28]
Y. S. Ho and G. McKay, “Pseudo-second order model for sorption processes,” Process Biochemistry, vol. 34, no. 5, pp. 451–465, 1999.
[29]
W. Weber and J. Morris, “Kinetics of adsorption on carbon from solution,” ASCE Journal of the Sanitary Engineering Division, vol. 89, pp. 31–60, 1963.
[30]
S.-C. Tsai and K.-W. Juang, “Comparison of linear and nonlinear forms of isotherm models for strontium sorption on a sodium bentonite,” Journal of Radioanalytical and Nuclear Chemistry, vol. 243, no. 3, pp. 741–746, 2000.
[31]
V. S. Mane, I. Deo Mall, and V. Chandra Srivastava, “Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash,” Journal of Environmental Management, vol. 84, no. 4, pp. 390–400, 2007.
[32]
R. Ahmad and R. Kumar, “Adsorptive removal of congo red dye from aqueous solution using bael shell carbon,” Applied Surface Science, vol. 257, no. 5, pp. 1628–1633, 2010.
[33]
M. Alkan, ?. Demirba?, and M. Do?an, “Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite,” Microporous and Mesoporous Materials, vol. 101, no. 3, pp. 388–396, 2007.
[34]
S. Chakraborty, S. Chowdhury, and P. Das Saha, “Adsorption of Crystal Violet from aqueous solution onto NaOH-modified rice husk,” Carbohydrate Polymers, vol. 86, no. 4, pp. 1533–1541, 2011.
[35]
P. Li, Y.-J. Su, Y. Wang, B. Liu, and L.-M. Sun, “Bioadsorption of methyl violet from aqueous solution onto Pu-erh tea powder,” Journal of Hazardous Materials, vol. 179, no. 1–3, pp. 43–48, 2010.
[36]
E.-K. Guechi and O. Hamdaoui, “Sorption of malachite green from aqueous solution by potato peel: kinetics and equilibrium modeling using non-linear analysis method,” Arabian Journal of Chemistry, 2011.
[37]
O. Hamdaoui, “Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick,” Journal of Hazardous Materials, vol. 135, no. 1–3, pp. 264–273, 2006.
[38]
V. Vijayakumaran and S. Arivoli, “Equilibrium and kinetic modeling on the removal of malachite green from aqueous solution using odina wodier bark carbon,” Journal of Materials and Environmental Science, vol. 3, no. 3, pp. 525–536, 2012.
[39]
A. T. M. Din and B. H. Hameed, “Adsorption of methyl violet dye on acid modified activated carbon: isotherms and thermodynamics,” Journal of Applied Science in Environmental Sanitation, vol. 5, no. 2, pp. 161–170, 2010.
[40]
K. G. Bhattacharyya and A. Sharma, “Adsorption of Pb(II) from aqueous solution by Azadirachta indica (Neem) leaf powder,” Journal of Hazardous Materials, vol. 113, no. 1–3, pp. 97–109, 2004.
[41]
A. N. Fernandes, C. A. P. Almeida, C. T. B. Menezes, N. A. Debacher, and M. M. D. Sierra, “Removal of methylene blue from aqueous solution by peat,” Journal of Hazardous Materials, vol. 144, no. 1-2, pp. 412–419, 2007.