This paper proposes current controlled differential difference current conveyor transconductance amplifier (CCDDCCTA), a new active building block for analog signal processing. The functionality of the proposed block is verified via SPICE simulations using 0.25?μm TSMC CMOS technology parameters. The usefulness of the proposed element is demonstrated through an application, namely, wave filter. The CCDDCCTA-based wave equivalents are developed which use grounded capacitors and do not employ any resistors. The flexibility of terminal characteristics is utilized to suggest an alternate wave equivalents realization scheme which results in compact realization of wave filter. The feasibility of CCDDCCTA-based wave active filter is confirmed through simulation of a third-order Butterworth filter. The filter cutoff frequency can be tuned electronically via bias current. 1. Introduction The current mode approach for analog signal processing circuits and systems has received considerable attention and emerged as an alternate method besides the traditional voltage mode circuits [1] due to its potential performance features like wide bandwidth, less circuit complexity, wide dynamic range, low power consumption, and high operating speed. The current mode active elements are appropriate to operate with signals in current, voltage, or mixed mode and are gaining acceptance as building blocks in high performance circuit designs which is clear from the availability of wide variety of current mode active elements [2–10]. Recently some analog building blocks [11–16] based on current conveyor variants and transconductance amplifier (TA) cascades in monolithic chip are proposed in open literature which gives compact implementation of signal processing circuits and systems. The examples of such blocks are current conveyor transconductance amplifier (CCTA) [11, 12], current controlled current conveyor transconductance amplifier (CCCCTA) [13], differential voltage current conveyor transconductance amplifier (DVCCTA) [14], differential voltage current controlled conveyor transconductance amplifier DVCCCTA [15], and differential difference current conveyor transconductance amplifier (DDCCTA) [16]. A new active building block, namely, current controlled differential difference current conveyor transconductance amplifier (CCDDCCTA) which has current controlled differential difference current conveyor (CCDDCC) [10] as input block followed by a TA. The CCDDCCTA possesses all the good properties of CCCCTA and DVCCCTA including the possibility of inbuilt tuning of the parameters of
References
[1]
G. FerriI and N. C. Guerrini, Low-Voltage Low-Power CMOS Current Conveyors, Kluwer Academic, London, UK.
[2]
R. L. Geiger and E. Sanchez-Sinencio, “Active filter design using operational transconductance amplifiers: a tutorial,” IEEE Circuits and Devices Magazine, vol. 1, no. 2, pp. 20–32, 1985.
[3]
C. Toumazou, “Pynea, current feedback opamp: a blessing in disguise?” IEEE Circuits and Devices Magazine, vol. 10, pp. 43–47, 1994.
[4]
A. S. Sedra and K. C. Smith, “A second generation current conveyor its application,” IEEE Transactions on Circuit Theory, vol. 17, no. 1, pp. 132–134, 1970.
[5]
I. A. Awad and A. M. Soliman, “Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications,” International Journal of Electronics, vol. 86, no. 4, pp. 413–432, 1999.
[6]
A. Fahre, “High frequency applications based on a new current controlled conveyor,” IEEE Transactions on Circuits and Systems I, vol. 43, no. 2, pp. 82–91, 1996.
[7]
H. O. Elwan and A. M. Soliman, “Novel CMOS differential voltage current conveyor and its applications,” IEE Proceedings Circuits Devices Systems, vol. 144, pp. 195–200, 1997.
[8]
F. Kafe and C. Psychalinos, “Differential voltage class-AB current controlled current conveyor,” in Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems (ICECS '10), pp. 458–461, December 2010.
[9]
W. Chiu, S. I. Liu, H. W. Tsao, and J. J. Chen, “CMOS differential difference current conveyors and their applications,” IEE Proceedings on Circuits Devices Systems, vol. 143, pp. 91–96, 1996.
[10]
P. Prommee and M. Somdunyakanok, “CMOS-based current-controlled DDCC and its applications to capacitance multiplier and universal filter,” International Journal of Electronics and Communications, vol. 65, no. 1, pp. 1–8, 2011.
[11]
R. Prokop and V. Musil, “CCTA-a new modern circuit block and its internal realization,” in Proceedings of International Conference on Electronic Devices and Systems (IMAPSCZ '05), pp. 89–93.
[12]
W. Jaikla, P. Silapan, C. Chanapromma, and M. Siripruchyanun, “Practical implementation of CCTA based on commercial CCII and OTA,” in Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS '08), 2008.
[13]
M. Siripruchyanun and W. Jaikla, “Current controlled current conveyor transconductance amplifier (CCCCTA): a building block for analog signal processing,” Electrical Engineering, vol. 90, no. 6, pp. 443–453, 2008.
[14]
A. Jantakun, N. Pisutthipong, and M. Siripruchyanun, “A synthesis of temperature insensitive/electronically controllable floating simulators based on DV-CCTAs,” in Proceedings of the 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON '09), pp. 560–563, May 2009.
[15]
W. Jaikla, M. Siripruchyanun, and A. Lahiri, “Resistorless dual-mode quadrature sinusoidal oscillator using a single active building block,” Microelectronics Journal, vol. 42, no. 1, pp. 135–140, 2011.
[16]
N. Pandey and S. K. Paul, “Differential difference current conveyor transconductance amplifier (DDCCTA): a new analog building block for signal processing,” Journal of Electrical and Computer Engineering, vol. 2011, Article ID 361384, 10 pages, 2011.
[17]
E. A. Soliman and S. A. Mahmoud, “New CMOS fully differential current conveyor and its application in realizing sixth order complex filter,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '09), pp. 57–60, May 2009.
[18]
M. A. Ibrahim and H. Kuntman, “A novel high CMRR high input impedance differential voltage-mode KHN-biquad employing DO-DDCCs,” International Journal of Electronics and Communications, vol. 58, no. 6, pp. 429–433, 2004.
[19]
H. Wupper and K. Meerkoetter, “New active filter synthesis based on scattering parameters,” IEEE Transactions on Circuits and Systems, vol. 22, no. 7, pp. 594–602, 1975.
[20]
I. Haritantis, A. G. Constantinides, and T. Deliyannis, “Wave active filters,” Proceedings of the IEE, vol. 123, no. 7, pp. 676–682, 1976.
[21]
G. Koukiou and C. Psychalinos, “Modular filter structures using current feedback operational amplifiers,” Radioengineering, vol. 19, no. 4, pp. 662–666, 2010.
[22]
N. Pandey and P. Kumar, “Realization of resistorless wave active filter using differential voltage current controlled conveyor transconductance amplifier,” Radioengineering, vol. 20, pp. 911–916, 2011.