%0 Journal Article %T Current Controlled Differential Difference Current Conveyor Transconductance Amplifier and Its Application as Wave Active Filter %A Neeta Pandey %A Praveen Kumar %A Jaya Choudhary %J ISRN Electronics %D 2013 %R 10.1155/2013/968749 %X This paper proposes current controlled differential difference current conveyor transconductance amplifier (CCDDCCTA), a new active building block for analog signal processing. The functionality of the proposed block is verified via SPICE simulations using 0.25£¿¦Ìm TSMC CMOS technology parameters. The usefulness of the proposed element is demonstrated through an application, namely, wave filter. The CCDDCCTA-based wave equivalents are developed which use grounded capacitors and do not employ any resistors. The flexibility of terminal characteristics is utilized to suggest an alternate wave equivalents realization scheme which results in compact realization of wave filter. The feasibility of CCDDCCTA-based wave active filter is confirmed through simulation of a third-order Butterworth filter. The filter cutoff frequency can be tuned electronically via bias current. 1. Introduction The current mode approach for analog signal processing circuits and systems has received considerable attention and emerged as an alternate method besides the traditional voltage mode circuits [1] due to its potential performance features like wide bandwidth, less circuit complexity, wide dynamic range, low power consumption, and high operating speed. The current mode active elements are appropriate to operate with signals in current, voltage, or mixed mode and are gaining acceptance as building blocks in high performance circuit designs which is clear from the availability of wide variety of current mode active elements [2¨C10]. Recently some analog building blocks [11¨C16] based on current conveyor variants and transconductance amplifier (TA) cascades in monolithic chip are proposed in open literature which gives compact implementation of signal processing circuits and systems. The examples of such blocks are current conveyor transconductance amplifier (CCTA) [11, 12], current controlled current conveyor transconductance amplifier (CCCCTA) [13], differential voltage current conveyor transconductance amplifier (DVCCTA) [14], differential voltage current controlled conveyor transconductance amplifier DVCCCTA [15], and differential difference current conveyor transconductance amplifier (DDCCTA) [16]. A new active building block, namely, current controlled differential difference current conveyor transconductance amplifier (CCDDCCTA) which has current controlled differential difference current conveyor (CCDDCC) [10] as input block followed by a TA. The CCDDCCTA possesses all the good properties of CCCCTA and DVCCCTA including the possibility of inbuilt tuning of the parameters of %U http://www.hindawi.com/journals/isrn.electronics/2013/968749/