Voltammetric behaviors of Copper (II) nitrogen bearing nucleobases, such as Guanine (C5H4N5O2) was studied in electro analyzer using cyclic voltammetry (CV) on a Glassy Carbon Electrode. Assessment of the chemical and physical conditions that may favor optimum current enhancement was done by studying the effect of variation of concentration of metal and ligand ions, variation of scan rate, variation of step height, variation of pH values, and variation of supporting electrolyte as (NH4)2SO4, KCl, and NaCl. It was observed that Copper and Guanine forms a 1?:?2 ratio complex. The work reflects that increasing the concentration of either metal ion or ligand ion increases the corresponding current. Increasing the scan rate increases the corresponding current linearly with the square root of the scan rate. As the step height decreases the peaks become sharp. Anodic and cathodic current increases linearly with decreasing step height. For the complex mixture the complexation occurs maximum at a pH of 2.3–7.0 and is badly restricted in the slightly alkaline medium and the complexing order of the supporting electrolyte showed a trend as . 1. Introduction The complexation of organic compounds with selected metal ion has a wide variety of application in medicinal chemistry, surface chemistry, and analytical chemistry. Complexation of medicinal substances with ions influence the bioavailability of drugs in the body and the biological action that affects the stability of medicinal compounds since a large number of metals are taken into the body system either with drugs or in the form of diet. The complex formation has been suggested as one of the important mechanisms for certain drug action [1]. The metal chelating phenomena are used to reduce the toxic effect of drugs in human physiology. The studies of redox behavior biologically and biochemically important compound are gaining importance because such redox phenomena are close to natural processes occurring in human and living organism. Toxic metals are generally more important than abundant metals, in terms of environmental pollution, because of their effects on living organisms. The study of trace metals toxicity on biological system [2, 3] indicates that an under supply would not yield steady growth and over supply would not, above the threshold level, generate toxicity with lethality at the end. At least twenty metals are known to be toxic and half of these including As, Cd, Cr, Cu, Pb, Ni, Ag, Se, Mn, and Zn are released into the environment in sufficient quantities to pose a risk to human health [4–6].
References
[1]
N. Farrell, Transition Metal Complexes as Drugs and Chemotherapeutic Agents, vol. 11, Springer, 1989.
[2]
U. C. Gupta and S. C. Gupta, “Trace element toxicity relationships to crop production and livestock and human health: implications for management,” Communications in Soil Science and Plant Analysis, vol. 29, no. 11–14, pp. 1491–1522, 1998.
[3]
B. A. Chowdhury and R. K. Chandra, “Biological and health implications of toxic heavy metal and essential trace element interactions,” Progress in Food & Nutrition Science, vol. 11, no. 1, pp. 57–113, 1987.
[4]
V. Mudgal, N. Madaan, A. Mudgal, R. B. Singh, and S. Mishra, “Effect of toxic metals on human health,” The Open Nutraceuticals Journal, vol. 3, pp. 94–99, 2010.
[5]
J. O. Nriagu, “A silent epidemic of environmental metal poisoning?” Environmental Pollution, vol. 50, no. 1-2, pp. 139–161, 1988.
[6]
J. N. Galloway, J. D. Thornton, S. A. Norton, H. L. Volchok, and R. A. N. McLean, “Trace-metals in atmospheric deposition: a review and assessment,” Atmospheric Environment, vol. 16, no. 7, pp. 1677–1700, 1982.
[7]
W. Zheng, M. Aschner, and J.-F. Ghersi-Egea, “Brain barrier systems: a new frontier in metal neurotoxicological research,” Toxicology and Applied Pharmacology, vol. 192, no. 1, pp. 1–11, 2003.
[8]
H. V. Aposhian, R. M. Maiorino, D. Gonzalez-Ramirez et al., “Mobilization of heavy metals by newer, therapeutically useful chelating agents,” Toxicology, vol. 97, no. 1–3, pp. 23–38, 1995.
[9]
S. J. S. Flora, M. Mittal, and A. Mehta, “Heavy metal induced oxidative stress & its possible reversal by chelation therapy,” Indian Journal of Medical Research, vol. 128, no. 4, pp. 501–523, 2008.
[10]
M. Elyasi, M. A. Khalilzadeh, and H. Karimi-Maleh, “High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples,” Food Chemistry, vol. 141, no. 4, pp. 4311–4317, 1996.
[11]
H. Karimi-Maleh, P. Biparva, and M. Hatami, “A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid,” Biosensors and Bioelectronics, vol. 48, pp. 270–275, 2013.
[12]
A. M. Oliveira-Brett, V. Diculescu, and J. A. P. Piedade, “Electrochemical oxidation mechanism of guanine and adenine using a glassy carbon microelectrode,” Bioelectrochemistry, vol. 55, no. 1-2, pp. 61–62, 2002.
[13]
A. A. Shaikh, K. Dilip Paul, M. S. Rahman, and K. Pradip Bakshi, “Interactions of guanine with Cr(VI), Ag(I), Cd(II) and Hg(II) in acidic aqueous medium,” Journal of Bangladesh Chemical Society, vol. 24, no. 2, pp. 106–114, 2011.
[14]
P. Kamalakannan and D. Venkappayya, “Synthesis and characterization of cobalt and nickel chelates of 5-dimethylaminomethyl-2-thiouracil and their evaluation as antimicrobial and anticancer agents,” Journal of Inorganic Biochemistry, vol. 90, no. 1-2, pp. 22–37, 2002.
[15]
A. Robertazzi and J. A. Platts, “Binding of transition metal complexes to guanine and guanine-cytosine: Hydrogen bonding and covalent effects,” Journal of Biological Inorganic Chemistry, vol. 10, no. 8, pp. 854–866, 2005.
[16]
S. Zhu, A. Matilla, J. M. Tercero, V. Vijayaragavan, and J. A. Walmsley, “Binding of palladium(II) complexes to guanine, guanosine or guanosine 5′ -monophosphate in aqueous solution: potentiometric and NMR studies,” Inorganica Chimica Acta, vol. 357, no. 2, pp. 411–420, 2004.
[17]
T. F. Mastropietro, D. Armentano, E. Grisolia et al., “Guanine-containing copper(ii) complexes: synthesis, X-ray structures and magnetic properties,” Dalton Transactions, vol. 8, no. 4, pp. 514–520, 2008.
[18]
E. Sletten and B. Lie, “Copper complex of guanosine-5′-monophosphate,” Acta Crystallographica, vol. 32, pp. 3301–3304, 1976.
[19]
A. Habib, T. Shireen, A. Islam, N. Begum, and A. M. Shafiqul Alam, “Cyclic voltammetric studies of copper and manganese in the presence of L-leucine using glassy carbon electrode,” Pakistan Journal of Analytical & Environmental Chemistry, vol. 7, pp. 96–102, 2006.
[20]
A. A. Abdullah, “Synthesis and structural studies of some nucleic acids metal complexes,” Basrah Journal of Scienec, vol. 24, no. 1, pp. 115–128, 2006.
[21]
R. B. Sumathi and M. B. Halli, “Metal (II) complexes derived from naphthofuran-2-carbohydrazide and diacetylmonoxime Schiff base: synthesis, spectroscopic, electrochemical, and biological investigation,” Bioinorganic Chemistry and Applications, vol. 2014, Article ID 942162, 11 pages, 2014.
[22]
T. Al Tanvir, M. Elius Hossain, M. Al Mamun, and M. Q. Ehsan, “Preparation and characterization of Iron(Iii) complex of Saccharin,” Journal of Bangladesh Academy of Sciences, vol. 37, no. 2, pp. 195–203, 2013.
[23]
I. Cukrowski, J. R. Zeevaart, and N. V. Jarvis, “A potentiometric and differential pulse polarographic study of Cd(II) with 1-hydroxyethylenediphosphonic acid,” Analytica Chimica Acta, vol. 379, no. 1-2, pp. 217–226, 1999.
[24]
A. A. Shaikh, M. Badrunnessa, J. Firdaws, M. Shahidur Rahman, N. Ahmed Pasha, and P. K. Bakshi, “A cyclic voltammetric study of the influence of supporting electrolytes on the redox behaviour of Cu(II) in aqueous medium,” Journal of Bangladesh Chemical Society, vol. 24, no. 2, pp. 158–164, 2011.