%0 Journal Article %T A CV Study of Copper Complexation with Guanine Using Glassy Carbon Electrode in Aqueous Medium %A Md. Sohel Rana %A Mohammad Arifur Rahman %A A. M. Shafiqul Alam %J ISRN Electrochemistry %D 2014 %R 10.1155/2014/308382 %X Voltammetric behaviors of Copper (II) nitrogen bearing nucleobases, such as Guanine (C5H4N5O2) was studied in electro analyzer using cyclic voltammetry (CV) on a Glassy Carbon Electrode. Assessment of the chemical and physical conditions that may favor optimum current enhancement was done by studying the effect of variation of concentration of metal and ligand ions, variation of scan rate, variation of step height, variation of pH values, and variation of supporting electrolyte as (NH4)2SO4, KCl, and NaCl. It was observed that Copper and Guanine forms a 1£¿:£¿2 ratio complex. The work reflects that increasing the concentration of either metal ion or ligand ion increases the corresponding current. Increasing the scan rate increases the corresponding current linearly with the square root of the scan rate. As the step height decreases the peaks become sharp. Anodic and cathodic current increases linearly with decreasing step height. For the complex mixture the complexation occurs maximum at a pH of 2.3¨C7.0 and is badly restricted in the slightly alkaline medium and the complexing order of the supporting electrolyte showed a trend as . 1. Introduction The complexation of organic compounds with selected metal ion has a wide variety of application in medicinal chemistry, surface chemistry, and analytical chemistry. Complexation of medicinal substances with ions influence the bioavailability of drugs in the body and the biological action that affects the stability of medicinal compounds since a large number of metals are taken into the body system either with drugs or in the form of diet. The complex formation has been suggested as one of the important mechanisms for certain drug action [1]. The metal chelating phenomena are used to reduce the toxic effect of drugs in human physiology. The studies of redox behavior biologically and biochemically important compound are gaining importance because such redox phenomena are close to natural processes occurring in human and living organism. Toxic metals are generally more important than abundant metals, in terms of environmental pollution, because of their effects on living organisms. The study of trace metals toxicity on biological system [2, 3] indicates that an under supply would not yield steady growth and over supply would not, above the threshold level, generate toxicity with lethality at the end. At least twenty metals are known to be toxic and half of these including As, Cd, Cr, Cu, Pb, Ni, Ag, Se, Mn, and Zn are released into the environment in sufficient quantities to pose a risk to human health [4¨C6]. %U http://www.hindawi.com/journals/isrn.electrochemistry/2014/308382/