The inhibitive effect of Jeera (Cuminum cyminum) plant extracts on the corrosion of mild steel in an aqueous solution of seawater was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The stability of the inhibition efficiency of Jeera extracts was examined by weight-loss method. Potentiodynamic polarization curves indicated that the Jeera extract behaves as an anodic type inhibitor. EIS measurements showed that the dissolution process occurs under activation control. The corrosion rates of steel and the inhibition efficiencies of the extract obtained from impedance and polarization measurements were in good agreement. Inhibition was found to increase with an increasing concentration of the plant extract. The results obtained show that the Jeera extract could serve as an effective inhibitor for the corrosion of mild steel in seawater. 1. Introduction Recently, plant extracts have again become important as an environmentally acceptable, readily available, and renewable source for a wide range of needed inhibitors. Plant extracts are viewed as an incredibly rich source of naturally synthesized chemical compounds that can be extracted by simple procedures with low cost. However, synergistic (and antagonistic) effects are often expected with these mixtures of inhibitors that may affect their inhibition efficiency. Several investigations have been reported using such economic plant extracts. El Hosary et al. [1] studied the corrosion inhibition of aluminium and zinc in 2?N?HCl using naturally occurring Hibiscus sabdariffa (Karkade) extract. The inhibition of corrosion of steel, aluminium, and copper in HCl, H2SO4, and citric acid by molasses was also studied [2], and 83% and 13% inhibition efficiencies were obtained for HCl and H2SO4 solutions, respectively, containing 0.75% molasses. Loto reported the inhibitive action of Vernonia amygdalina (bitter leaf) on the corrosion of mild steel in 0.5?M?HCl at 28°C [3]. Avwiri and Igho studied the inhibitive action of V. amygdalina on the corrosion of aluminium alloys in HCl and HNO3 at concentrations of 0.2 and 0.4?g/L at 29°C [4]. They showed that the solution extract of the leaves serves as an excellent inhibitor. The inhibition effect of Zanthoxylum alatum plant extract on the corrosion of mild steel in 20%, 50%, and 88% aqueous orthophosphoric acid has been investigated by weight loss and electrochemical impedance spectroscopy (EIS). Plant extract was found to reduce the corrosion of steel more effectively in 88% than in 20% phosphoric acid [5]. An
References
[1]
A. A. El Hosary, R. M. Saleh, and A. M. Shams El Din, “Corrosion inhibition by naturally occurringsubstances-I. The effect of Hibiscus subdariffa (karkade) extract on the dissolution of Al and Zn,” Corrosion Science, vol. 12, no. 12, pp. 897–904, 1972.
[2]
A. A. El Hosary and R. M. Saleh, Progress in Understanding and Prevention of Corrosion, vol. 2, The Institute of Materials, London, UK, 1993.
[3]
C. A. Loto, “The effect of Vernonia amygdalina (bitter leaf) solution extract on the corrosion inhibition of mild steel,” Nigerian Corrosion Journal, vol. 19, pp. 20–28, 1998.
[4]
G. O. Avwiri and F. O. Igho, “Inhibitive action of Vernonia amygdalina on the corrosion of aluminium alloys in acidic media,” Materials Letters, vol. 57, no. 22-23, pp. 3705–3711, 2003.
[5]
G. Gunasekaran and L. R. Chauhan, “Eco friendly inhibitor for corrosion inhibition of mild steel in phosphoric acid medium,” Electrochimica Acta, vol. 49, no. 25, pp. 4387–4395, 2004.
[6]
K. O. Orubite and N. C. Oforka, “Inhibition of the corrosion of mild steel in hydrochloric acid solutions by the extracts of leaves of Nypa fruticans Wurmb,” Materials Letters, vol. 58, no. 11, pp. 1768–1772, 2004.
[7]
A. Y. El-Etre, “Natural honey as corrosion inhibitor for metals and alloys. I. Copper in neutral aqueous solution,” Corrosion Science, vol. 40, no. 11, pp. 1845–1850, 1998.
[8]
A. Y. El-Etre and M. Abdallah, “Natural honey as corrosion inhibitor for metals and alloys. II. C-steel in high saline water,” Corrosion Science, vol. 42, no. 4, pp. 738–738, 2000.
[9]
A. Y. El-Etre, “Inhibition of acid corrosion of aluminum using vanillin,” Corrosion Science, vol. 43, no. 6, pp. 1031–1039, 2001.
[10]
A. Y. El-Etre, “Inhibition of aluminum corrosion using Opuntia extract,” Corrosion Science, vol. 45, no. 11, pp. 2485–2495, 2003.
[11]
A. Y. El-Etre, M. Abdallah, and Z. E. El-Tantawy, “Corrosion inhibition of some metals using lawsonia extract,” Corrosion Science, vol. 47, no. 2, pp. 385–395, 2005.
[12]
A. Chetouani and B. Hammouti, “Corrosion inhibition of iron in hydrochloric acid solutions by naturally henna,” Bulletin of Electrochemistry, vol. 19, no. 1, pp. 23–25, 2003.
[13]
Chetouani, “Etude Numerique de problemes non linear at application aux problemes de dynamique de population,” [Ph.D. thesis], University Oujda, Oujda, Morocco, 2003.
[14]
B. Hammouti, S. Kertit, and M. Mellhaoui, “Bgugaine: a natural pyrollidine alkaloid product as corrosion inhibitor of iron in HCl medium,” Bulletin of Electrochemistry, vol. 11, p. 553, 1995.
[15]
B. Hammouti, S. Kertit, and A. Melhaoui, “Electrochemical behaviour of bgugaine as a corrosion inhibitor of iron in 1 M HCl,” Bulletin of Electrochemistry, vol. 13, no. 3, pp. 97–98, 1997.
[16]
S. Kertit, B. Hammouti, and M. Mellhaoui, “Bgugaine comme inhibitor de corrosion du fer en milieu acide chlorhydrique,” Moroccan Patent no. 23910, 1995.
[17]
R. M. Saleh and A. A. El-Hosaray, “Corrosion inhibition by naturally occuring substance-I the effect of Hibiscus subdariffa (Karkade) extract on the dissolution of Al and Zn,” in Proceedings of the 13th Seminar on Electrochemistry, CECRI, Karaikudi, India, 1972.
[18]
A. El-Hosary, M. M. Gowish, and R. M. Saleh, “Evaluation of quinolines as inhibitors by electrochemical techniques,” in Proceedings of the 2nd International Symposium and Oriented Basic Electrochemistry, vol. 7, SAEST, IIT, Madras, Technical Session, 1980, paper 6.24.
[19]
J. Arockia Selvi, S. Rajendran, V. Ganga Sri, A. John Amalraj, and B. Narayanasamy, “Corrosion inhibition by beet root extract,” Portugaliae Electrochimica Acta, vol. 27, no. 1, pp. 1–11, 2009.
[20]
M. J. Sanghvi, S. K. Shukla, A. N. Mishra, M. R. Padh, and G. N. Mehta, 5th National Congress on Corrosion Control, New Delhi, India, 1995.
[21]
M. J. Sanghvi, S. K. Shukla, A. N. Mishra, M. R. Padh, and G. N. Mehta, “Formulation of 5% HCl corrosion inhibition for mild steel using weight loss and DC polarization technique,” in International Conference on Maintenance, Inspection, Corrosion, Materials Engineering and Plant Reliability Baroda (MICMEP '99), vol. 84–87, p. 87, Baroda, India, February 1999.
[22]
S. J. Zakvi and G. N. Mehta, “Acid corrosion of mild steel and its inhibition by swertia aungustifolia-study by electrochemical techniques,” Transactions of the SAEST, vol. 23, no. 4, pp. 407–410, 1988.
[23]
P. Kar, A. Hussein, G. Varkey, and G. Singh, “Corrosion inhibition of mild steel in hydrochloric acid by acid entacts of sapindus trifolianus, acaciaconcian and Trifla, Trans,” MFAI, vol. 51, pp. 143–147, 1996.
[24]
S. A. Verma and G. N. Mehta, “Effects of acid extracts of powered seeds of Eugenia Jambolans on corrosion of mild steel in HCl-study by DC polarisation techniques,” Transactions of the SAEST, vol. 32, no. 4, pp. 89–93, 1997.
[25]
P. Sakthivel, P. V. Nirmala, S. Umamaheswari et al., “Corrosion inhibition of mild steel by extracts of Pongamia Glabra and Annona Squamosa in acidic media,” Bulletin of Electrochemistry, vol. 15, no. 2, pp. 83–86, 1999.
[26]
S. Verma and G. N. Mehta, “Effect of acid extracts of acacia arabica on acid corrosion of mild steel,” Bulletin of Electrochemistry, vol. 15, no. 2, pp. 67–70, 1999.
[27]
U. J. Ekpe, E. E. Ebenso, and U. J. Ibok, “Inhibitory action of Azadirachta indica leaves extract on the corrosion of mild steel in H2SO4,” West African Journal of Biological and Applied Chemistry, vol. 37, pp. 13–30, 1994.
[28]
U. J. Ekpe, E. E. Ebenso, and U. J. I. Ibok, Journal of the West African Science Association, vol. 37, p. 13, 1994.
[29]
A. Loto, “The effect of bitterleaf extracts on corrosion of mild steel in 0.5M HCl and H2SO4 solutions,” Nigerian Corrosion Journal, pp. 19–20, 1998.
[30]
S. P. Ramesh, K. P. Vinod Kumar, and M. G. Sethuraman, “Extract of andrographis paniculata as corrosion inhibitor of mild steel in acid medium,” Bulletin of Electrochemistry, vol. 17, no. 3, pp. 141–144, 2001.
[31]
M. G. Sethuraman, P. Vadivel, and K. P. Vinod Kumar, “Tea wastes as corrosion inhibitor for mild steel in acid medium,” Journal of the Electrochemical Society of India, vol. 50, p. 143, 2001.
[32]
M. Kliskic, J. Radosevic, S. Gudic, and V. Katalinic, “Aqueous extract of Rosmarinus officinalis L. as inhibitor of Al-Mg alloy corrosion in chloride solution,” Journal of Applied Electrochemistry, vol. 30, no. 7, pp. 823–830, 2000.
[33]
M. Abdallah, “Guar gum as corrosion inhibitor for carbon steel in sulfuric acid solutions,” Portugaliae Electrochimica Acta, vol. 22, pp. 161–175, 2004.
[34]
S. Martinez and I. Stern, “Inhibitory mechanism of low-carbon steel corrosion by mimosa tannin in sulphuric acid solutions,” Journal of Applied Electrochemistry, vol. 31, no. 9, pp. 973–978, 2001.
[35]
E. Oguzie, “Inhibition of acid corrosion of mild steel by Telfaria occidentalis,” Pigment and Resin Technology, vol. 34, no. 6, pp. 321–326, 2005.
[36]
M. Abdel-Gaber, B. A. Abd-El-Nabey, I. M. Sidahmed, A. M. El-Zayaday, and M. Saa dawy, “Inhibitive action of some plant extracts on the corrosion of steel in acidic media,” Corrosion Science, vol. 48, no. 9, pp. 2765–2779, 2006.
[37]
A. El-Hosary, R. M. Saleh, and A. M. Sharns El Din, “Corrosion inhibition by naturally occurringsubstances-I. The effect of Hibiscus subdariffa (karkade) extract on the dissolution of Al and Zn,” Corrosion Science, vol. 12, no. 12, pp. 897–904, 1972.
[38]
S. Rajendran, S. Muthulakshmi, R. Rajeswari, and A. Vijitha, “Emerging trends in corrosion science and engineering,” Journal of the Electrochemical Society of India, vol. 54, no. 2, p. 61.
[39]
S. Rajendran and K. Anuradha, “Corrosion behaviour of aluminium in rain water containing garlic extract,” Surface Engineering, vol. 21, no. 3, pp. 229–231, 2005.
[40]
S. Rajendran, S. Shanmugapriya, T. Rajalakshmi, and A. J. Amal Raj, “Corrosion inhibition by an aqueous extract of rhizome powder,” Corrosion, vol. 61, no. 7, pp. 685–692, 2005.
[41]
S. Rajendran, J. Arokiaselvi, and V. Gangasree, “Corrosion inhibition by beet root extract,” Protugalia Electrochemica Acta, vol. 27, no. 1, pp. 1–11, 2009.
[42]
G. Wranglen, Introduction to Corrosion and Protection of Metals, vol. 236, Chapman & Hall, London, UK, 1985.
[43]
J. Sathyabama, R. Susai, S. J. Arokia, and A. A. John, “Methyl orange as corrosion inhibitor for carbon steel in well water,” Indian Journal of Chemical Technology, vol. 15, pp. 462–466, 2008.
[44]
S. Rajendran, S. P. Sridevi, N. Anthony, A. J. Amalraj, and M. Sundaravadivelu, “Corrosion behaviour of carbon steel in polyvinyl alcohol,” Anti-Corrosion Methods and Materials, vol. 52, no. 2, pp. 102–107, 2005.
[45]
F. R. Selvarani, S. Santhamadharasi, J. W. Sahayaraj, A. J. Amalraj, and S. Rajendran, “Synergistic effect of succinic acid and Zn2+ in controlling corrosion of carbon steel,” Bulletin of Electrochemistry, vol. 20, no. 12, pp. 561–565, 2004.
[46]
S. Rajendran, S. M. Reenkala, N. Anthony, and R. Ramaraj, “Synergistic corrosion inhibition by the sodium dodecylsulphate-Zn2+ system,” Corrosion Science, vol. 44, no. 10, pp. 2243–2252, 2002.
[47]
N. S. Iacobellis, P. Lo Cantore, F. Capasso, and F. Senatore, “Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils,” Journal of Agricultural and Food Chemistry, vol. 53, no. 1, pp. 57–61, 2005.
[48]
S. Agnesia Kanimozhi and S. Rajendran, “Inhibitive properties of sodium tungstate-Zn2+ system and its synergism with HEDP,” International Journal of Electrochemical Science, vol. 4, pp. 353–368, 2009.
[49]
R. M. Silver stein, G. C. Bassler, and T. C. Morrill, Spectroscopic Identification of Organic Compound, vol. 95, John Wiley & Sons, New York, NY, USA, 1986.