%0 Journal Article %T Cuminum cyminum Extracts as Eco-Friendly Corrosion Inhibitor for Mild Steel in Seawater %A V. Sribharathy %A Susai Rajendran %J ISRN Corrosion %D 2013 %R 10.1155/2013/370802 %X The inhibitive effect of Jeera (Cuminum cyminum) plant extracts on the corrosion of mild steel in an aqueous solution of seawater was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The stability of the inhibition efficiency of Jeera extracts was examined by weight-loss method. Potentiodynamic polarization curves indicated that the Jeera extract behaves as an anodic type inhibitor. EIS measurements showed that the dissolution process occurs under activation control. The corrosion rates of steel and the inhibition efficiencies of the extract obtained from impedance and polarization measurements were in good agreement. Inhibition was found to increase with an increasing concentration of the plant extract. The results obtained show that the Jeera extract could serve as an effective inhibitor for the corrosion of mild steel in seawater. 1. Introduction Recently, plant extracts have again become important as an environmentally acceptable, readily available, and renewable source for a wide range of needed inhibitors. Plant extracts are viewed as an incredibly rich source of naturally synthesized chemical compounds that can be extracted by simple procedures with low cost. However, synergistic (and antagonistic) effects are often expected with these mixtures of inhibitors that may affect their inhibition efficiency. Several investigations have been reported using such economic plant extracts. El Hosary et al. [1] studied the corrosion inhibition of aluminium and zinc in 2£¿N£¿HCl using naturally occurring Hibiscus sabdariffa (Karkade) extract. The inhibition of corrosion of steel, aluminium, and copper in HCl, H2SO4, and citric acid by molasses was also studied [2], and 83% and 13% inhibition efficiencies were obtained for HCl and H2SO4 solutions, respectively, containing 0.75% molasses. Loto reported the inhibitive action of Vernonia amygdalina (bitter leaf) on the corrosion of mild steel in 0.5£¿M£¿HCl at 28¡ãC [3]. Avwiri and Igho studied the inhibitive action of V. amygdalina on the corrosion of aluminium alloys in HCl and HNO3 at concentrations of 0.2 and 0.4£¿g/L at 29¡ãC [4]. They showed that the solution extract of the leaves serves as an excellent inhibitor. The inhibition effect of Zanthoxylum alatum plant extract on the corrosion of mild steel in 20%, 50%, and 88% aqueous orthophosphoric acid has been investigated by weight loss and electrochemical impedance spectroscopy (EIS). Plant extract was found to reduce the corrosion of steel more effectively in 88% than in 20% phosphoric acid [5]. An %U http://www.hindawi.com/journals/isrn.corrosion/2013/370802/