全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fatigue Damage Estimation in Existing Railway Steel Bridges by Detailed Loading History Analysis

DOI: 10.5402/2012/231674

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fatigue life estimation of metal historical bridges is a key issue for managing cost-effective decisions regarding rehabilitation or replacement of existing infrastructure. Because of increasing service loads and speeds, this type of assessment method is becoming relevant. Hence there is a need to estimate how long these structures could remain in service. In this paper a method to estimate fatigue damage in existing steel railway bridges by detailed loading history analysis is presented. The procedure is based on the assumption that failure probability is a function of the number of predicted future trains and the probability of failure is related to the probability of reaching the critical crack length. 1. Introduction A relevant amount of the bridges in the European railway networks are metal made and have been built during the last 100 years. The increasing volume of traffic and axle weight of trains means that the current loads are much higher than those envisaged when the bridge was designed. In this context, issues as maintenance, assessment, rehabilitation, and strengthening of existing bridges assume a significant importance [1, 2]. The authors have developed some works concerning assessment and fatigue behavior of metal railway bridges by means of full-scale experimental testing. In particular in Pipinato et al. [3, 4] full-scale tests on dismantled steel bridges have been developed, whereas assessment of existing bridges and estimation of their remaining fatigue life are shown in Pipinato and Modena [5] and Pipinato et al. [6]. Moreover, a comprehensive method to assess the reliability of existing bridges taking fatigue into account has been recently published [7]. Among historical metal bridges, riveted structures are the most common; the role of riveted connections in the fatigue assessment is documented by several researches, such as, in Bruhwiler et al. [8], Kulak [9], Akesson and Edlund [10], Di Battista et al. [11], Bursi et al. [12], Matar and Greiner [13], Boulent et al. [14], Albrecht and Lenwari [15], Kühn et al. [16], Albrecht and Lenwari [17], and Brühwiler et al. [18]. Fatigue is one of the most common causes of failure in riveted bridges, as highlighted by the ASCE Committee on Fatigue and Fracture Reliability [19] and confirmed by Byers et al. [20]. Increasing loads on existing riveted bridges and the fact that these bridges were not explicitly designed against fatigue-raised questions regarding their remaining fatigue life. As a consequence, a better knowledge of the loading history is needed, having a relevant role in the

References

[1]  C. Pellegrino, A. Pipinato, and C. Modena, “A simplified management procedure for bridge network maintenance,” Structure and Infrastructure Engineering, vol. 7, no. 5, pp. 341–351, 2011.
[2]  A. Pipinato, C. Pellegrino, and C. Modena, “Fatigue assessment of highway steel bridges in presence of seismic loading,” Engineering Structures, vol. 33, no. 1, pp. 202–209, 2010.
[3]  A. Pipinato, C. Pellegrino, O. S. Bursi, and C. Modena, “High-cycle fatigue behavior of riveted connections for railway metal bridges,” Journal of Constructional Steel Research, vol. 65, no. 12, pp. 2167–2175, 2009.
[4]  A. Pipinato, M. Molinari, C. Pellegrino, O. Bursi, and C. Modena, “Fatigue tests on riveted steel elements taken from a railway bridge,” Structure and Infrastructure Engineering, vol. 7, no. 12, pp. 907–920, 2009.
[5]  A. Pipinato and C. Modena, “Structural analysis and fatigue reliability assessment of the paderno bridge,” Practice Periodical on Structural Design and Construction, vol. 15, no. 2, pp. 109–124, 2010.
[6]  A. Pipinato, C. Pellegrino, and C. Modena, “Assessment procedure and rehabilitation criteria for the riveted railway Adige bridge,” Structure and Infrastructure Engineering, vol. 8, no. 8, pp. 747–764, 2010.
[7]  A. Pipinato, “Step level procedure for remaining fatigue life evaluation of one railway bridge,” Baltic Journal of Road and Bridge Engineering, vol. 5, no. 1, pp. 28–37, 2010.
[8]  E. Bruhwiler, I. F. C. Smith, and M. A. Hirt, “Fatigue and fracture of riveted bridge members,” Journal of Structural Engineering, vol. 116, no. 1, pp. 198–214, 1990.
[9]  G. L. Kulak, “Discussion of fatigue strength of riveted bridge members, by J.W. Fisher, B.T. Yen, D. Wang,” Journal of Structural Engineering, vol. 116, no. 11, pp. 2968–2981, 1990.
[10]  B. Akesson and B. Edlund, “Remaining fatigue life of riveted railway bridges,” Stahlbau, vol. 65, no. 11, pp. 429–436, 1996.
[11]  J. D. Di Battista, D. E. J. Adamson, and G. L. Kulak, “Fatigue strength of riveted connections,” Journal of Structural Engineering, vol. 124, no. 7, pp. 792–797, 1998.
[12]  O. S. Bursi, F. Ferrario, and V. Fontanari, “Non-linear analysis of the low-cycle fracture behaviour of isolated Tee stub connections,” Computers and Structures, vol. 80, no. 27–30, pp. 2333–2360, 2002.
[13]  E. B. Matar and R. Greiner, “Fatigue test for a riveted steel railway bridge in Salzburg,” Structural Engineering International, vol. 16, no. 3, pp. 252–260, 2006.
[14]  M. I. Boulent, T. D. Righiniotis, and M. K. Chryssanthopoulos, “Probabilistic fatigue evaluation of riveted railway bridges,” Journal of Bridge Engineering, vol. 13, no. 3, pp. 237–244, 2008.
[15]  P. Albrecht and A. Lenwari, “Design of prestressing tendons for strengthening steel truss bridges,” Journal of Bridge Engineering, vol. 13, no. 5, pp. 449–454, 2008.
[16]  B. Kühn, M. Luki?, A. Nussbaumer, et al., “Assessment of existing steel structures, Recommendations for estimation of the remaining fatigue life,” Joint Research Centre-European Convention for Constructional Steelwork Report, 2008.
[17]  P. Albrecht and A. Lenwari, “Variable-amplitude fatigue strength of structural steel bridge details: review and simplified model,” Journal of Bridge Engineering, vol. 14, no. 4, pp. 226–237, 2009.
[18]  E. Brühwiler, M. A. Hirt, and V. Fontanari, “Umgang mit genieteten Bahnbrücken von hohem kulturellem Wert,” Stahlbau, vol. 79, no. 3, pp. 209–219, 2010.
[19]  American Society of Civil Engineers (ASCE), “Committee on fatigue and fracture reliability of the committee on structural safety and reliability of the structural division. Fatigue reliability 1–4,” Journal of Structural Division, vol. 108, pp. 83–88, 1982.
[20]  W. G. Byers, M. J. Marley, J. Mohammadi, R. J. Nielsen, and S. Sarkani, “Fatigue reliability reassessment applications: state-of-the-art paper,” Journal of Structural Engineering, vol. 123, no. 3, pp. 277–285, 1997.
[21]  UIC, Leaflets 779-1 R: Recommendations for the Evaluation of the Load Carrying Capacity of Existing Steel Bridges, International Union of Railways, Utrecht, The Netherlands, 1988.
[22]  EN 1991-2, Eurocode 1: Action on Structures—Part 2—Load on Bridges, Comité Européen de Normalisation (CEN), Brussels, Belgium, 2005.
[23]  CER, International railway traffic CER, Community of european railway and infrastructure companies, 2009.
[24]  A. Keller, E. Brühwiler, and M. A. Hirt, “Assessment of a 135 year old riveted railway bridge,” in Extending the Lifespan of Structures, vol. 73/2, pp. 1029–1034, IABSE Symposium Report, San Francisco, Calif, USA, 1995.
[25]  Instruction 44/F, Verifica a Fatica dei Ponti Ferroviari, Technical Code of Italian Railway Authority, Milan, Italy, 1992.
[26]  C. A. Cornell, “Bounds on the reliability of structural systems,” Journal of Structural Division, vol. 93, pp. 171–200, 1967.
[27]  A. Coppe, R. T. Haftka, N. H. Kim, and C. Bes, “A statistical model for estimating probability of crack detection,” in Proceedings of the International Conference on Prognostics and Health Management (PHM '08), pp. 1–5, October 2008.
[28]  Sustainable Bridges, Guideline for Load and Resistance Assessment of Existing European Railway Bridges-Advices on the use of advanced methods. European research project under the EU 6th framework programme, http://www.sustainablebridges.net/, 2006.
[29]  ISO 13822, Basis for Design of Structures-Assessment of Existing Structures, ISO-International Organization for Standardization, Geneva, Switzerland, 2010.
[30]  P. Kunz, Probabilistisches verfahren zur beurteilung der ermuedungssicherheit bestehender bruecken aus stahl, Ph.D. thesis Number 1023, Swiss Federal Institute of Technology, Lausanne, Switzerland, 1992.
[31]  M. S. Cheung and W. C. Li, “Probabilistic fatigue and fracture analyses of steel bridges,” Structural Safety, vol. 25, no. 3, pp. 245–262, 2003.
[32]  D. O. Harris, “Probabilistic fracture mechanics,” in Probabilistic Structural Mechanics Handbook, C. Sundararajan, Ed., pp. 106–145, Chapman & Hall, New York, NY, USA, 1995.
[33]  K. Ortiz and A. S. Kiremidjian, “Stochastic modeling of fatigue crack growth,” Engineering Fracture Mechanics, vol. 29, no. 3, pp. 317–334, 1988.
[34]  G. F. Oswald and G. I. Schu?ller, “Reliability of deteriorating structures,” Engineering Fracture Mechanics, vol. 20, no. 3, pp. 479–488, 1984.
[35]  J. L. Bogdanoff and F. Kozin, Probabilistic Models of Cumulative Damage, Wiley, New York, NY, USA, 1985.
[36]  P. Paris and F. Erdogan, “A critical analysis of crack propagation laws,” Journal of Basic Engineering, vol. 85, no. 4, pp. 528–534, 1963.
[37]  Y. Murakami, Stress Intensity Factors Handbook, Pergamon Press, Oxford, UK, 1987.
[38]  K. Yamada, C. Qiuliang, and O. Naoki, “Fatigue crackgrowth measurements under spectrum loading,” Engineering Fracture Mechanics, vol. 66, no. 5, pp. 483–497, 2000.
[39]  S. K. Raju, F. Moses, and C. G. Schilling, “Reliability calibration of fatigue evaluation and design procedures,” Journal of Structural Engineering, vol. 116, no. 5, pp. 1356–1369, 1990.
[40]  M. A. Miner, “Cumulative damage in fatigue,” Journal of Applied Mechanics, vol. 12, no. 3, pp. A159–A164, 1945.
[41]  EN 1993-1-9, Eurocode 3: Design of Steel Structures—Part 1–9: Fatigue, Comité Européen de Normalisation (CEN), Brussels, Belgium, 2005.
[42]  A. Keller, E. Bruhwiler, and M. A. Hirt, Assessment of a 135 Year Old Riveted Railway Bridge, IABSE Colloquium, Copenhagen, Denmark, 1993.
[43]  U. Bremen, Amelioration du comportement a la fatigue d'assemblages soudes: etudes de modelisation de l'effet de contraintes residuelles, Graduation thesis, école Polytechnique Fédérale de Lausanne, Vaud, Switzerland, 1989.
[44]  American Society for Testing and Materials (ASTM), ASTM E1049-85: Standard Practices for Cycle Counting in Fatigue Analysis, American Society for Testing and Materials, New York, NY, USA, 2005.
[45]  A. Pipinato, High-cycle fatigue behaviour of historical metal riveted railway bridges, Ph.D. thesis, University of Padova, Padova, Italy, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133