%0 Journal Article %T Fatigue Damage Estimation in Existing Railway Steel Bridges by Detailed Loading History Analysis %A Alessio Pipinato %A Carlo Pellegrino %A Claudio Modena %J ISRN Civil Engineering %D 2012 %R 10.5402/2012/231674 %X Fatigue life estimation of metal historical bridges is a key issue for managing cost-effective decisions regarding rehabilitation or replacement of existing infrastructure. Because of increasing service loads and speeds, this type of assessment method is becoming relevant. Hence there is a need to estimate how long these structures could remain in service. In this paper a method to estimate fatigue damage in existing steel railway bridges by detailed loading history analysis is presented. The procedure is based on the assumption that failure probability is a function of the number of predicted future trains and the probability of failure is related to the probability of reaching the critical crack length. 1. Introduction A relevant amount of the bridges in the European railway networks are metal made and have been built during the last 100 years. The increasing volume of traffic and axle weight of trains means that the current loads are much higher than those envisaged when the bridge was designed. In this context, issues as maintenance, assessment, rehabilitation, and strengthening of existing bridges assume a significant importance [1, 2]. The authors have developed some works concerning assessment and fatigue behavior of metal railway bridges by means of full-scale experimental testing. In particular in Pipinato et al. [3, 4] full-scale tests on dismantled steel bridges have been developed, whereas assessment of existing bridges and estimation of their remaining fatigue life are shown in Pipinato and Modena [5] and Pipinato et al. [6]. Moreover, a comprehensive method to assess the reliability of existing bridges taking fatigue into account has been recently published [7]. Among historical metal bridges, riveted structures are the most common; the role of riveted connections in the fatigue assessment is documented by several researches, such as, in Bruhwiler et al. [8], Kulak [9], Akesson and Edlund [10], Di Battista et al. [11], Bursi et al. [12], Matar and Greiner [13], Boulent et al. [14], Albrecht and Lenwari [15], K¨¹hn et al. [16], Albrecht and Lenwari [17], and Br¨¹hwiler et al. [18]. Fatigue is one of the most common causes of failure in riveted bridges, as highlighted by the ASCE Committee on Fatigue and Fracture Reliability [19] and confirmed by Byers et al. [20]. Increasing loads on existing riveted bridges and the fact that these bridges were not explicitly designed against fatigue-raised questions regarding their remaining fatigue life. As a consequence, a better knowledge of the loading history is needed, having a relevant role in the %U http://www.hindawi.com/journals/isrn.civil.engineering/2012/231674/