The aim of the present study was to scrutinize the response of banana (Grand Naine variety) plants when interacting with dead or live pathogen, Fusarium oxysporum f.sp. cubense, a causative agent of Panama disease. Response of plants was evaluated in terms of induction of defense-related marker enzyme activity, namely, peroxidase (POX), polyphenol oxidase (PPO), -1,3 glucanase, chitinase, and phenolics. Plant's interaction with live pathogen resulted in early induction of defense to restrain penetration as well as antimicrobial productions. However, pathogen overcame the defense of plant and caused disease. Interaction with dead pathogen resulted in escalating defense response in plants. Later on plants inoculated with dead pathogen showed resistance to even forced inoculation of live pathogen. Results obtained in the present study suggest that dead pathogen was able to mount defense response in plants and provide resistance to Panama disease upon subsequent exposure. Therefore, preparation from dead pathogen could be a potential candidate as a biocontrol agent or plant vaccine to combat Panama disease. 1. Introduction Musa acuminata (Banana) is one of the most important fruit crops of world as well as of India. Banana could be considered poor man’s apple, and it is the cheapest among all other fruits in the country. Fusarium wilt caused by Fusarium oxysporum f.sp. cubense (Foc) is the most destructive disease of banana [1]. The pathogen is soil-borne and remains viable up to several years and cause 20%–80% loss of banana. Several disease management strategies can be used such as crop rotation, burning infected plants or plant parts, and application of carbendazim [2]. Methods mentioned have limited success, and the application of synthetic fungicides may result in undesirable effects on the environment. An alternative to above strategies for managing fusarium wilt is the use of biological control. Biocontrol agent can be a beneficial organism (live or dead) or its part such as cell wall, protein, and oligosaccharides [3]. While using live organisms as a biocontrol agent, appropriate conditions for maintaining it should be strictly followed. Nevertheless, if part of the organism such as cell wall, protein, oligosaccharide, or attenuated/killed organism is used then strict conditions are not required. Plants, humans, and animals give instantaneous response to the pathogen or its part. Animals and humans produce antibodies against pathogen or vaccine, similarly plants response to pathogen attack by producing PR-proteins, defense-related enzymes [4],
References
[1]
N. Y. Moore, K. G. Pegg, S. Bentley, and L. J. Smith, “Fusarium wilt of banana: global problems and perspectives,” in Banana Fusarium Wilt Management: Towards Sustainable Cultivation, A. B. Molina, N. H. Nikmasdek, and K. W. Liew, Eds., pp. 11–30, INIBAP-ASPNET, Laguna, Philippines, 2001.
[2]
R. A. Thangavelu, B. Palaniswami, and R. Velazhahan, “Mass production of Trichoderma harzianum for managing fusarium wilt of banana,” Agriculture Ecosystem Environment, vol. 103, pp. 259–263, 2004.
[3]
S. Boukaew, S. Chuenchit, and V. Petcharat, “Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili pepper,” BioControl, vol. 56, no. 3, pp. 365–374, 2011.
[4]
J. N. Thakker, N. Patel, and I. L. Kothari, “Fusarium oxysporum derived Elicitor-induced changes in Enzymes of Banana leaves against wilt disease,” Journal of Mycology Plant Pathology, vol. 37, pp. 510–513, 2007.
[5]
J. N. Thakker, P. Patel, and P. C. Dhandhukia, “Induction of defense-related enzymesin susceptible variety of banana: role of Fusarium derived elicitors,” Achieves of Phytopathology and Plant Protection, vol. 44, no. 20, pp. 1976–1984, 2011.
[6]
S. Sadashivam and A. Manickam, Enzymes: Biochemical Methods, New Age International (P) Limited, New Delhi, India, 2nd edition, 1992.
[7]
B. Meena, T. Marimuthu, and R. Velazhahan, “Salicylic acid induces systemic resistance in groundnut against late leaf spot caused by Cercosporidium personatum,” Journal of Mycology and Plant Pathology, vol. 31, pp. 139–141, 2001.
[8]
O. Borrás-Hidalgo, “Basic insight in plant-pathogen interaction,” Biotecnologia Aplicada, vol. 21, no. 1, pp. 1–4, 2004.
[9]
J. T. Greenberg and B. A. Vinatzer, “Identifying type III effectors of plant pathogens and analyzing their interaction with plant cells,” Current Opinion in Microbiology, vol. 6, no. 1, pp. 20–28, 2003.
[10]
T. Nürnberger and D. Scheel, “Signal transmission in the plant immune response,” Trends in Plant Science, vol. 6, no. 8, pp. 372–379, 2001.
[11]
S. E. Blondelle and K. Lohner, “Combinatorial libraries: a tool to design anti-microbial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies,” Biopolymers, vol. 55, no. 1, pp. 74–87, 2000.
[12]
A. F. Bent, “Plant mitogen-activated protein kinase cascades: negative regulatory roles turn out positive,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 3, pp. 784–786, 2001.
[13]
L. C. Van Loon, “Induced resistance in plants and the role of pathogenesis-related proteins,” European Journal of Plant Pathology, vol. 103, no. 9, pp. 753–765, 1997.
[14]
F. Passardi, C. Cosio, C. Penel, and C. Dunand, “Peroxidases have more functions than a Swiss army knife,” Plant Cell Reports, vol. 24, no. 5, pp. 255–265, 2005.
[15]
K. Sasaki, T. Iwai, S. Hiraga et al., “Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus,” Plant and Cell Physiology, vol. 45, no. 10, pp. 1442–1452, 2004.
[16]
M. Lavania, P. S. Chauhan, S. V. S. Chauhan, H. B. Singh, and C. S. Nautiyal, “Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213,” Current Microbiology, vol. 52, no. 5, pp. 363–368, 2006.
[17]
P. Díaz-Vivancos, M. Rubio, V. Mesonero et al., “The apoplastic antioxidant system in Prunus: response to long-term plum pox virus infection,” Journal of Experimental Botany, vol. 57, no. 14, pp. 3813–3824, 2006.
[18]
P. Vera, P. Tornero, and V. Conejero, “Cloning and expression analysis of a viroid-induced peroxidase from tomato plants,” Molecular Plant-Microbe Interactions, vol. 6, no. 6, pp. 790–794, 1993.
[19]
M. Mohammadi and H. Kazemi, “Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance,” Plant Science, vol. 162, no. 4, pp. 491–498, 2002.
[20]
S. Chunhua, D. Ya, X. Bingle, L. Xiao, X. Yonshu, and L. Qinguang, “The purification and spectral properties of PPO I from Nicotianan tababcum,” Plant Molecular Biology, vol. 19, pp. 301–314, 2001.
[21]
A. M. Mayer and E. Harel, “Polyphenol oxidases in plants,” Phytochemistry, vol. 18, no. 2, pp. 193–215, 1979.
[22]
T. Sarvanan, R. Bhaskaran, and M. Muthuswamy, “Pseudomonas fluorescence induced enzymological changes in banana roots (cv Rasthali) against fusarium wilt disease,” Plant Pathology Journal, vol. 3, no. 2, pp. 72–70, 2004.
[23]
F. B. Abeles, P. Bosshart, L. E. Forrence, and W. Habiz, “Preparation and purification of glucanase and chitinase from bean leaves,” Plant Physiology, vol. 47, no. 1, pp. 129–134, 1970.
[24]
J. N. Thakker, K. Shah, and I. L. Kothari, “Elicitation, partial purification and antifungal activity of β- 1, 3 glucanse from banana plants,” Journal of Pure and Applied Science PRAJNA, vol. 17, pp. 10–16, 2009.
[25]
W. K. Roberts and C. P. Selitrennikoff, “Plant and Bacteria differ in antifungal activity,” Journal of General Microbiology, vol. 134, pp. 168–176, 1988.
[26]
F. Mauch and L. A. Staehelin, “Functional implication of the subcellular localization of ethylene-induced chitinase and β-1, 3-glucanase in bean leaves,” Plant Cell, vol. 1, no. 4, pp. 447–457, 1989.
[27]
A. Ramanathan, P. Vidhasekaran, and R. Samiyappan, “Induction of defense mechanisms in greengram leaves and suspension-cultured cells by Macrophomina phaseolina and its elicitors,” Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, vol. 107, no. 3, pp. 245–257, 2000.
[28]
R. D. C. F. D. A. Anna and I. A. Dubery, “Panama disease: cell wall reinforcement in banana roots in response to elicitors from Fusarium oxysporum f. sp. cubense Race four,” Phytopathology, vol. 90, no. 10, pp. 1173–1180, 2000.