Fascioliasis, a snail-borne parasitic zoonosis, has been recognized for a long time because of its major veterinary and human impact. Different Bait formulations were fed to the snail Lymnaea acuminata in clear glass aquaria having diameter of 30?cm. Snail attractant containing bait formulations was prepared from different binary combination (1?:?1 ratio) of carbohydrates (glucose, starch 10?mM) and amino acid (methionine, histidine 10?mM) in 100?ml of 2% agar solution + sublethal (20% and 60% of 24?h and 96?h LC50) doses of different molluscicides (eugenol, ferulic acid, umbelliferone, and limonene). Snails fed on bait containing sub-lethal concentration of different molluscicides and the snail attractant, causing a significant inhibition in alkaline phosphatase (ALP) and acetylcholinesterase (AChE) activity in the nervous tissue of the vector snail L. acuminata. Maximum inhibition in ALP (20% of control) and AChE (49.49% of control) activity was observed in the nervous tissue of the L. acuminata exposed to 60% of 96?h LC50 of eugenol in the bait pellets containing starch + histidine, starch + methionine, respectively. 1. Introduction Fascioliasis is an important cattle and human disease caused by two major species of Fasciola hepatica and F. gigantica in different parts of the world [1, 2]. Worldwide, 17 million individuals are infected with Fasciola, and more than 90 million people are at risk of fascioliasis [3]. Normally, fascioliasis is reported in livestock animals; now, more occurrence of fascioliasis in human population is noted in different parts of the world [4, 5]. In northern India, Lymnaea acuminata is the intermediate host of the Fasciola species [1, 6–9]. One way to reduce the incidence of fascioliasis is to delink the life cycle of fluke by destroying the intermediate hosts [6, 10–16]. Bait formulation of different molluscicides would be an effective tool for selective killing of the snail with minimal adverse effect on the nontarget animal and environment. The use of a combination of snail attractant and molluscicides in bait formulation [17] is an effective tool for the snails’ control. The aim of the present study is to evaluate the effect of sub-lethal feeding of molluscicides eugenol, ferulic acid, umbelliferone, and limonene [14] in bait formulations containing attractant carbohydrates (glucose, starch) and amino acids (methionine, histidine) attractant on alkaline phosphatase (ALP) and acetylcholinesterase (AChE) activity in the nervous tissue of the snail L. acuminata. 2. Materials and Methods 2.1. Collection of Snails Adult L.
References
[1]
R. A. Agarwal and D. K. Singh, “Harmful gastropods and their control,” Acta Hydrochimica et Hydrobiologica, vol. 16, no. 2, pp. 113–138, 1988.
[2]
S. Mas-Coma, M. A. Valero, and M. D. Bargues, “Chapter 2 fasciola, lymnaeids and human fascioliasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, molecular epidemiology and control,” Advances in Parasitology, vol. 69, pp. 41–146, 2009.
[3]
J. Keiser and J. Utzinger, “Food-borne trematodiases,” Clinical Microbiology Reviews, vol. 22, no. 3, pp. 466–483, 2009.
[4]
M. G. Chen and K. E. Mott, “Progress in assessment of morbidity due to Fasciola hepatica infection: a review of recent literature,” Tropical Diseases Bulletin, vol. 87, pp. R1–R38, 1990.
[5]
M. S. Mas-Coma, J. G. Esteban, and M. D. Bargues, “Epidemiology of human fascioliasis: a review and proposed new classification,” Bulletin of the World Health Organization, vol. 77, no. 4, pp. 340–346, 1999.
[6]
P. Kumar and D. K. Singh, “Molluscicidal activity of Ferula asafoetida, Syzygium aromaticum and Carum carvi and their active components against the snail Lymnaea acuminata,” Chemosphere, vol. 63, no. 9, pp. 1568–1574, 2006.
[7]
K. Sunita and D. K. Singh, “Fascioliasis control: in vivo and in vitro phytotherapy of vector snail to kill Fasciola larva,” Journal of Parasitology Research, vol. 2011, Article ID 240807, 7 pages, 2011.
[8]
K. K. Singh, D. K. Singh, and V. K. Singh, “Toxicity of Bauhinia variegata and Mimusops elengi with plant molluscicides against Lymnaea acuminata,” Journal of Biology and Earth Science, vol. 2, no. 2, pp. B76–B82, 2012.
[9]
K. Sunita, P. Kumar, and D. K. Singh, “Abiotic environmental factors and infection of Fasciola gigantica in vector snail Lymnaea acuminata,” Researcher, vol. 4, no. 8, pp. 49–53, 2012.
[10]
D. Godan, Pests Slugs and Snail Biology and Control, Edited By Dora Godan, Translated By Sheila Gruber, Springer Verlag, Berlin, Germany, 1983.
[11]
A. Marston and K. Hostettmann, “Review article number 6. Plant molluscicides,” Phytochemistry, vol. 24, no. 4, pp. 639–652, 1985.
[12]
P. Kumar, V. K. Singh, and D. K. Singh, “Kinetics of enzyme inhibition by active molluscicidal agents ferulic acid, umbelliferone, eugenol and limonene in the nervous tissue of snail Lymnaea acuminata,” Phytotherapy Research, vol. 23, no. 2, pp. 172–177, 2009.
[13]
P. Kumar and D. K. Singh, “Amino acids and carbohydrates binary combination as an attractant in bait formulation against the snail Lymnaea acuminata,” Malaysian Applied Biology, vol. 39, no. 1, pp. 7–11, 2010.
[14]
P. Kumar, V. K. Singh, and D. K. Singh, “Combination of molluscicides with attractant carbohydrates and amino acids in bait formulation against the snail Lymnaea acuminata.,” European Review for Medical and Pharmacological Sciences, vol. 15, no. 5, pp. 550–555, 2011.
[15]
P. Kumar, V. K. Singh, and D. K. Singh, “Bait formulation of molluscicides with attractant amino acid against the snail Indoplanorbis exustus,” Pharmacologyonline, vol. 3, pp. 30–36, 2011.
[16]
P. Kumar, V. K. Singh, and D. K. Singh, “Attractant food pellets containing molluscicides against the fresh water snail Indoplanorbis exustus,” Global Veterinaria, vol. 8, no. 2, pp. 105–110, 2012.
[17]
P. Kumar and D. K. Singh, “Binary combination of some common species against harmful snail,” Journal of Applied Bioscience, vol. 33, no. 2, pp. 167–170, 2007.
[18]
H. Madsen, “A comparative study on the food-locating ability of Helisoma duryi, Biomphalaria camerunensis and Bulinus truncatus (Pulmonata: Planorbidae),” Journal of Applied Ecology, vol. 29, no. 1, pp. 70–78, 1992.
[19]
F. Tiwari and D. K. Singh, “Attraction to amino acids by Lymnaea acuminata, the snail host of Fasciola species,” Brazilian Journal of Medical and Biological Research, vol. 37, no. 4, pp. 587–590, 2004.
[20]
F. Tiwari and D. K. Singh, “Behavioural responses of the snail Lymnaea acuminata to carbohydrates in snail-attractant pellets,” Naturwissenschaften, vol. 91, no. 8, pp. 378–380, 2004.
[21]
U. H. Bergmeyer, Methods of Enzymatic Analysis, Academic Press, New York, NY, USA, 1967.
[22]
D. K. Singh and R. A. Agarwal, “Toxicity of piperonyl butoxide-carbaryl synergism on the snail Lymnaea acuminata,” Internationale Revue der Gesamten Hydrobiologie, vol. 74, no. 6, pp. 689–699, 1989.
[23]
G. L. Ellman, K. D. Courtney, V. Andres, and R. M. Featherstone, “A new and rapid colorimetric determination of acetylcholinesterase activity,” Biochemical Pharmacology, vol. 7, no. 2, pp. 88–IN1, 1961.
[24]
D. K. Singh and R. A. Agarwal, “In vivo and in vitro studies on synergism with anticholinesterase pesticides in the snail Lymnaea acuminata,” Archives of Environmental Contamination and Toxicology, vol. 12, no. 4, pp. 483–487, 1983.
[25]
R. R. Sokal and F. J. Rohlf, Introduction of Biostatistics, W. H. Freeman, San Francisco, Calif, USA, 2007.
[26]
P. Kumar, V. K. Singh, and D. K. Singh, “Enzyme activity in the nervous tissue of Lymnaea acuminata fed to different bait formulations,” American Journal of Chemistry, vol. 2, no. 2, pp. 89–93, 2012.
[27]
P. Kumar, V. K. Singh, and D. K. Singh, “Bait formulations of molluscicides and their effects on biochemical changes in the ovotestis of snail Lymnaea acuminata (Mollusca, Gastropoda:Lymneidae),” Revista do Instituto de Medicina Tropical de Sao Paulo, vol. 53, no. 5, pp. 271–275, 2011.
[28]
B. Pilo, M. V. Asnani, and R. V. Shah, “Studies on wound healing and repair in pigeon liver. III. Histochemical studies on the acid and alkaline phosphatases during the processes,” Journal of Animal Morphology and Physiology, vol. 19, no. 2, pp. 205–212, 1972.
[29]
L. P. M. Timmermans, “Studies on shell formation in mollusks,” Netherlands Journal of Zoology, vol. 19, pp. 17–36, 1969.
[30]
A. M. Ibrahim, M. G. Higazi, and E. S. Demian, “Histochemical localization of alkaline phosphatase activity in the alimentary tract of the snail Marisa coruarielis,” Bulletin of the Zoological Society of Egypt, vol. 26, pp. 94–105, 1974.
[31]
K. Singh and D. K. Singh, “Effect of Azadirachta indica (Neem) on the biochemical parameters in the ovotestis of Lymnaea acuminata,” Malaysia Applied Biology, vol. 26, no. 2, pp. 7–11, 1995.
[32]
A. Vorbrodt, “The role of phosphate in intracellular metabolism,” Postepy Higieny i Medycyny Doswiadczalnej, vol. 13, pp. 200–206, 1959.
[33]
F. Matsumura, Toxicology of Insecticides, Plenum Press, New York, NY, USA, 2nd edition, 1985.
[34]
V. K. Singh, S. Singh, S. Singh, and D. K. Singh, “Effect of active molluscicidal component of spices on different enzyme activities and biogenic amin levels in the nervous issue of Lymnaea acuminata,” Phytotherapy Research, vol. 13, no. 8, pp. 649–654, 1999.
[35]
S. Singh and D. K. Singh, “Effect of active molluscicidal components Abrus precatorius, Argemone mexicana and Nerium indicum on certain enzymes in the nervous tissue of Lymnaea acuminata,” Journal of Sciences, vol. 11, no. 3, pp. 187–194, 2000.
[36]
S. M. Tripathi, V. K. Singh, S. Singh, and D. K. Singh, “Enzyme inhibition by the molluscicidal agent Punica granatum Linn. bark and Canna indica Linn. root,” Phytotherapy Research, vol. 18, no. 7, pp. 501–506, 2004.
[37]
S. Shukla, V. K. Singh, and D. K. Singh, “The effect of single, binary, and tertiary combination of few plant derived molluscicides alone or in combination with synergist on different enzymes in the nervous tissues of the freshwater snail Lymnaea (Radix) acuminata (Lamark),” Pesticide Biochemistry and Physiology, vol. 85, no. 3, pp. 167–173, 2006.
[38]
P. Jaiswal, V. K. Singh, and D. K. Singh, “Enzyme inhibition by molluscicidal component of Areca catechu and Carica papaya in the nervous tissue of vector snail Lymnaea acuminata,” Pesticide Biochemistry and Physiology, vol. 92, no. 3, pp. 164–168, 2008.
[39]
Bullock, T. H. Orkand, and R. Grinnell A, Introduction to Nervous Systems, W. H. Freeman and Company, San Francisco, Calif, USA, 1977.
[40]
R. D. O'Brien, “Acetylcholinesterase and its inhibition,” in Insecticide Biochemistry and Physiology, C. F. Wilkinson, Ed., pp. 271–273, Plenum press, New York, NY, USA, 1976.
[41]
I. Kabeer Ahammad Sahib and K. V. Ramana Rao, “Toxicity of malathion to the freshwater fish Tilapia mossombica,” Bulletin of Environmental Contamination and Toxicology, vol. 24, no. 6, pp. 870–874, 1980.
[42]
E. Nagababu, J. M. Rifkind, S. Boindala, and L. Nakka, “Assessment of antioxidant activity of eugenol in vitro and in vivo,” Methods in Molecular Biology, vol. 610, pp. 165–180, 2010.
[43]
K. A. Naidu, “Eugenol-an inhibitor of lipoxygenase-dependent lipid peroxidation,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 53, no. 5, pp. 381–383, 1995.
[44]
B. Yogalakshmi, P. Viswanathan, and C. V. Anuradha, “Investigation of antioxidant, anti-inflammatory and DNA-protective properties of eugenol in thioacetamide-induced liver injury in rats,” Toxicology, vol. 268, no. 3, pp. 204–212, 2010.