This paper focuses on the problem of an adaptive neural network dynamic surface control (DSC) based on disturbance observer for the wheeled mobile robot with uncertain parameters and unknown disturbances. The nonlinear observer is used to compensate for the external disturbance, and the neural network is employed to approximate the uncertain and nonlinear items of system. Then, the Lyapunov theory is introduced to demonstrate the stabilization of the proposed control algorithm. Finally, the simulation results illustrate that the proposed algorithm not only is superior to conventional DSC in trajectory tracking and external friction disturbance compensation but also has better response, adaptive ability, and robustness. 1. Introduction Wheeled mobile robot is an intelligent object. It can collect the surrounding environmental information from the constant feedback of sensors and allodial makes decisions. Then, it outputs motion instructions and guides itself to move to the destination quickly with high precision of trajectory tracking [1, 2]. However, there still exists a challenging issue to control robot to obtain perfect dynamic performance because its mathematical model is usually multivariable, coupled, and nonlinear. Dong and Kuhnert [3] presented a tracking control approach for mobile robots with both parameter and nonparameter uncertainties. In [4], an wavelet-network-based controller is developed for mobile robots with unstructured dynamics and disturbances. Chwa [5] designed a position and heading direction controller using the SMC method for nonholonomic mobile robots. Gu and Hu [6] studied the receding horizon tracking control on the wheeled mobile robots, which used the optimized method to accelerate the convergence speed of errors. Nowadays various intelligence control algorithms for mobile robot have been represented in the literature, such as genetic algorithm [7], iterative learning control [8], neural networks [9], fuzzy logic [10], and backstepping. In the above-mentioned methods, the backstepping method is preferred. In [11], an adaptive tracking controller using a backstepping method is presented for the dynamic model of mobile robots with unknown parameters. Unfortunately, the backstepping suffers from the “explosion of complexity” caused by the repeated differentiation of virtual control functions [12]. Dynamic surface control (DSC) [13, 14] is a new control technique by introducing a first-order filter at each recursive step of the backstepping design procedure, such that the differentiation item on the virtual function can be
References
[1]
C.-Y. Chen, T.-H. S. Li, Y.-C. Yeh, and C.-C. Chang, “Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots,” Mechatronics, vol. 19, no. 2, pp. 156–166, 2009.
[2]
M. Deng, A. Inoue, K. Sekiguchi, and L. Jiang, “Two-wheeled mobile robot motion control in dynamic environments,” Robotics and Computer-Integrated Manufacturing, vol. 26, no. 3, pp. 268–272, 2010.
[3]
W. Dong and K.-D. Kuhnert, “Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties,” IEEE Transactions on Robotics, vol. 21, no. 2, pp. 261–266, 2005.
[4]
C. De Sousa Jr., E. M. Hemerly, and R. K. Harrop Galv?o, “Adaptive control for mobile robot using wavelet networks,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 32, no. 4, pp. 493–504, 2002.
[5]
D. K. Chwa, “Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates,” IEEE Transactions on Control Systems Technology, vol. 12, no. 4, pp. 637–644, 2004.
[6]
D. Gu and H. Hu, “Receding horizon tracking control of wheeled mobile robots,” IEEE Transactions on Control Systems Technology, vol. 14, no. 4, pp. 743–749, 2006.
[7]
R. Martínez, O. Castillo, and L. T. Aguilar, “Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms,” Information Sciences, vol. 179, no. 13, pp. 2158–2174, 2009.
[8]
W. B. J. Hakvoort, R. G. K. M. Aarts, J. van Dijk, and J. B. Jonker, “Lifted system iterative learning control applied to an industrial robot,” Control Engineering Practice, vol. 16, no. 4, pp. 377–391, 2008.
[9]
J. Ye, “Adaptive control of nonlinear PID-based analog neural networks for a nonholonomic mobile robot,” Neurocomputing, vol. 71, no. 7-9, pp. 1561–1565, 2008.
[10]
K. Samsudin, F. A. Ahmad, and S. Mashohor, “A highly interpretable fuzzy rule base using ordinal structure for obstacle avoidance of mobile robot,” Applied Soft Computing Journal, vol. 11, no. 2, pp. 1631–1637, 2011.
[11]
T. Fukao, H. Nakagawa, and N. Adachi, “Adaptive tracking control of a nonholonomic mobile robot,” IEEE Transactions on Robotics and Automation, vol. 16, no. 5, pp. 609–615, 2000.
[12]
P. Patrick Yip and J. Karl Hedrick, “Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems,” International Journal of Control, vol. 71, no. 5, pp. 959–979, 1998.
[13]
J. Na, X. Ren, G. Herrmann, and Z. Qiao, “Adaptive neural dynamic surface control for servo systems with unknown dead-zone,” Control Engineering Practice, vol. 19, no. 11, pp. 1328–1343, 2011.
[14]
Q. Chen, X. Ren, and J. A. Oliver, “Identifier-based adaptive neural dynamic surface control for uncertain DC-DC buck converter system with input constraint,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 4, pp. 1871–1883, 2012.
[15]
T. P. Zhang and S. S. Ge, “Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form,” Automatica, vol. 44, no. 7, pp. 1895–1903, 2008.
[16]
X.-Y. Zhang and Y. Lin, “A robust adaptive dynamic surface control for nonlinear systems with hysteresis input,” Acta Automatica Sinica, vol. 36, no. 9, pp. 1264–1271, 2010.
[17]
C.-S. Liu and H. Peng, “Disturbance estimation based tracking control for a robotic manipulator,” in Proceedings of the American Control Conference, vol. 1, pp. 92–96, June 1997.
[18]
C. Zhongyi, S. Fuchun, and C. Jing, “Disturbance observer-based robust control of free-floating space manipulators,” IEEE Systems Journal, vol. 2, no. 1, pp. 114–119, 2008.
[19]
X. G. Yan, S. Spurgeon, and C. Edwards, “State and parameter estimation for nonlinear delay systems using sliding mode techniques,” IEEE Transactions on Automatic Control, vol. 58, no. 4, pp. 1023–1029, 2013.
[20]
X. G. Yan, J. Lam, H. S. Li, and I. M. Chen, “Decentralized control of nonlinear large-scale systems using dynamic output feedback,” Journal of Optimization Theory and Applications, vol. 104, no. 2, pp. 459–475, 2000.
[21]
S. I. Han and K. S. Lee, “Robust friction state observer and recurrent fuzzy neural network design for dynamic friction compensation with backstepping control,” Mechatronics, vol. 20, no. 3, pp. 384–401, 2010.
[22]
A. Mohammadi, M. Tavakoli, H. J. Marquez, and F. Hashemzadeh, “Nonlinear disturbance observer design for robotic manipulators,” Control Engineering Practice, vol. 21, no. 3, pp. 253–267, 2013.