%0 Journal Article %T Wheeled Mobile Robot RBFNN Dynamic Surface Control Based on Disturbance Observer %A Shaohua Luo %A Songli Wu %A Zhaoqin Liu %A Hao Guan %J ISRN Applied Mathematics %D 2014 %R 10.1155/2014/634936 %X This paper focuses on the problem of an adaptive neural network dynamic surface control (DSC) based on disturbance observer for the wheeled mobile robot with uncertain parameters and unknown disturbances. The nonlinear observer is used to compensate for the external disturbance, and the neural network is employed to approximate the uncertain and nonlinear items of system. Then, the Lyapunov theory is introduced to demonstrate the stabilization of the proposed control algorithm. Finally, the simulation results illustrate that the proposed algorithm not only is superior to conventional DSC in trajectory tracking and external friction disturbance compensation but also has better response, adaptive ability, and robustness. 1. Introduction Wheeled mobile robot is an intelligent object. It can collect the surrounding environmental information from the constant feedback of sensors and allodial makes decisions. Then, it outputs motion instructions and guides itself to move to the destination quickly with high precision of trajectory tracking [1, 2]. However, there still exists a challenging issue to control robot to obtain perfect dynamic performance because its mathematical model is usually multivariable, coupled, and nonlinear. Dong and Kuhnert [3] presented a tracking control approach for mobile robots with both parameter and nonparameter uncertainties. In [4], an wavelet-network-based controller is developed for mobile robots with unstructured dynamics and disturbances. Chwa [5] designed a position and heading direction controller using the SMC method for nonholonomic mobile robots. Gu and Hu [6] studied the receding horizon tracking control on the wheeled mobile robots, which used the optimized method to accelerate the convergence speed of errors. Nowadays various intelligence control algorithms for mobile robot have been represented in the literature, such as genetic algorithm [7], iterative learning control [8], neural networks [9], fuzzy logic [10], and backstepping. In the above-mentioned methods, the backstepping method is preferred. In [11], an adaptive tracking controller using a backstepping method is presented for the dynamic model of mobile robots with unknown parameters. Unfortunately, the backstepping suffers from the ˇ°explosion of complexityˇ± caused by the repeated differentiation of virtual control functions [12]. Dynamic surface control (DSC) [13, 14] is a new control technique by introducing a first-order filter at each recursive step of the backstepping design procedure, such that the differentiation item on the virtual function can be %U http://www.hindawi.com/journals/isrn.applied.mathematics/2014/634936/