全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
VLSI Design  2013 

LDPC Decoder with an Adaptive Wordwidth Datapath for Energy and BER Co-Optimization

DOI: 10.1155/2013/913018

Full-Text   Cite this paper   Add to My Lib

Abstract:

An energy efficient low-density parity-check (LDPC) decoder using an adaptive wordwidth datapath is presented. The decoder switches between a Normal Mode and a reduced wordwidth Low Power Mode. Signal toggling is reduced as variable node processing inputs change in fewer bits. The duration of time that the decoder stays in a given mode is optimized for power and BER requirements and the received SNR. The paper explores different Low Power Mode algorithms to reduce the wordwidth and their implementations. Analysis of the BER performance and power consumption from fixed-point numerical and post-layout power simulations, respectively, is presented for a full parallel 10GBASE-T LDPC decoder in 65?nm CMOS. A 5.10?mm2 low power decoder implementation achieves 85.7?Gbps while operating at 185?MHz and dissipates 16.4?pJ/bit at 1.3?V with early termination. At 0.6?V the decoder throughput is 9.3?Gbps (greater than 6.4?Gbps required for 10GBASE-T) while dissipating an average power of 31?mW. This is 4.6 lower than the state of the art reported power with an SNR loss of 0.35?dB at . 1. Introduction Communication systems are becoming a standard requirement of every computing platform from wireless sensors, mobile telephony, netbooks, and server class computers. Local and cellular wireless communication throughputs are expected to increase to hundreds of Mbps and even beyond 1?Gbps [1–3]. With this increased growth for bandwidth comes larger systems integration complexity and higher energy consumption per packet. Low power design is therefore a major design criterion alongside the standards’ throughput requirement as both will determine the quality of service and cost. Additionally, mobile computing will take on a new dimension as a portal into Software as a Service (i.e., cloud computing) where low performance computers can tap into the power of a distant high-performance computer cluster [4, 5]. So far the emerging 10GBASE-T standard has not been adopted as quickly as predicted into the data center infrastructures because of their power consumption [6]. The power consumption of the 10GBASE-T PHY layer (more specifically the receiver, whose implementation is left open by the 802.3?an standard [7]) has become difficult to reduce [8]. LDPC code was first developed in 1962 [9] as an error correction technique that allowed communication over noisy channels possibly near the Shannon limit. With advancements in VLSI, LDPC codes have recently received a lot of attention because of their superior error correction performance and have been adopted by many recent standards

References

[1]  F. Clermidy, C. Bernard, R. Lemaire et al., “A 477mW NoC-based digital baseband for MIMO 4G SDR,” in Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC '10), pp. 278–279, February 2010.
[2]  T. Limberg, M. Winter, M. Bimberg et al., “A fully programmable 40 GOPS SDR single chip baseband for LTE/WiMAX terminals,” in Proceedings of the 34th European Solid-State Circuits Conference (ESSCIRC '08), pp. 466–469, September 2008.
[3]  T. Mohsenin and B. Baas, “Trends and challenges in LDPC hardware decoders,” in Proceedings of the 43rd Asilomar Conference on Signals, Systems and Computers, pp. 1273–1277, November 2009.
[4]  A. Weiss, “Computing in the clouds,” NetWorker, vol. 11, no. 4, pp. 16–25, 2007.
[5]  M. Armbrust, A. Fox, R. Griffth et al., “Above the clouds: a berkeley view of cloud computing,” Tech. Rep., EECS Department, University of California, Berkeley, Calif, USA, 2009.
[6]  R. Wilson, “10GBase-T: Is it really coming this time?” http://www.edn.com/article/459408-10GBase, 2009.
[7]  IEEE P802. 3an, 10GBASE-T task force, http://www.ieee802.org/3/an/.
[8]  S. Pope, “Look for power tradeoffs in 10GBASE-T ethernet,” http://www.eetimes.com/design/power-managementdesign/4005683/Look-for-power-tradeos-in-10GBASE-T-Ethernet, 2008.
[9]  R. G. Gallager, “Low-density parity check codes,” IRE Transactions on Information Theory, vol. 8, no. 1, pp. 21–28, 1962.
[10]  T.T.S.I. digital video broadcasting (DVB) second generation framing structure for broadband satellite applications, http://www.dvb.org/.
[11]  IEEE 802. 16e. air interface for fixed and mobile broadband wireless access systems. ieee p802. 16e/d12 draft, 2005.
[12]  G.hn/G. 9960. next generation standard for wired home network, http://www.itu.int/ITU-T/.
[13]  A. Darabiha, A. Chan Carusone, and F. R. Kschischang, “Power reduction techniques for LDPC decoders,” IEEE Journal of Solid-State Circuits, vol. 43, no. 8, pp. 1835–1845, 2008.
[14]  T. Mohsenin, D. N. Truong, and B. M. Baas, “A low-complexity message-passing algorithm for reduced routing congestion in LDPC decoders,” IEEE Transactions on Circuits and Systems I, vol. 57, no. 5, pp. 1048–1061, 2010.
[15]  Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikoli?, “An efficient 10GBASE-T ethernet LDPC decoder design with low error floors,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 843–855, 2010.
[16]  N. Onizawa, T. Hanyu, and V. C. Gaudet, “Design of high-throughput fully parallel LDPC decoders based on wire partitioning,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 3, pp. 482–489, 2010.
[17]  T. Mohsenin and B. Baas, “A split-decoding message passing algorithm for low density parity check decoders,” Journal of Signal Processing Systems, vol. 61, pp. 329–323, 2010.
[18]  T. Xanthopoulos and A. P. Chandrakasan, “A low-power dct core using adaptive bitwidth and arithmetic activity exploiting signal correlations and quantization,” IEEE Journal of Solid-State Circuits, vol. 35, no. 5, pp. 740–750, 2000.
[19]  D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Transactions on Information Theory, vol. 45, no. 2, pp. 399–431, 1999.
[20]  M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding of low-density parity check codes based on belief propagation,” IEEE Transactions on Communications, vol. 47, no. 5, pp. 673–680, 1999.
[21]  J. Chen and M. P. C. Fossorier, “Near optimum universal belief propagation based decoding of low-density parity check codes,” IEEE Transactions on Communications, vol. 50, no. 3, pp. 406–414, 2002.
[22]  I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin, “A class of low-density parity-check codes constructed based on reed-solomon codes with two information symbols,” IEEE Communications Letters, vol. 7, no. 7, pp. 317–319, 2003.
[23]  T. Mohsenin, D. Truong, and B. Baas, “An improved split-row threshold decoding algorithm for LDPC codes,” in Proceedings of the IEEE International Conference on Communications (ICC '09), June 2009.
[24]  Y. Sun and J. R. Cavallaro, “A low-power 1-Gbps reconfigurable LDPC decoder design for multiple 4G wireless standards,” in Proceedings of the IEEE International SOC Conference (SOCC '08), pp. 367–370, September 2008.
[25]  X. Y. Shih, C. Z. Zhan, C. H. Lin, and A. Y. Wu, “An 8.29 mm2 52 mW multi-mode LDPC decoder design for mobile WiMAX system in 0.13 CMOS process,” IEEE Journal of Solid-State Circuits, vol. 43, no. 3, pp. 672–683, 2008.
[26]  E. Yeo and B. Nikoli?, “A 1.1-Gb/s 4092-bit low-density parity-check decoder,” in Proceedings of the 1st IEEE Asian Solid-State Circuits Conference (ASSCC '05), pp. 237–240, November 2005.
[27]  R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge, “Near-threshold computing: reclaiming moore's law through energy efficient integrated circuits,” Proceedings of the IEEE, vol. 98, no. 2, pp. 253–266, 2010.
[28]  D. Oh and K. K. Parhi, “Nonuniformly quantized min-sum decoder architecture for low-density parity-check codes,” in Proceedings of the 18th ACM Great Lakes Symposium on (VLSI '08), pp. 451–456, ACM, New York, NY, USA, March 2008.
[29]  J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X. Y. Hu, “Reduced-complexity decoding of LDPC codes,” IEEE Transactions on Communications, vol. 53, no. 8, pp. 1288–1299, 2005.
[30]  L. Liu and C. J. R. Shi, “Sliced message passing: high throughput overlapped decoding of high-rate low-density parity-check codes,” IEEE Transactions on Circuits and Systems I, vol. 55, no. 11, pp. 3697–3710, 2008.
[31]  Y. L. Ueng, C. J. Yang, K. C. Wang, and C. J. Chen, “A multimode shuffled iterative decoder architecture for high-rate RS-LDPC codes,” IEEE Transactions on Circuits and Systems I, vol. 57, no. 10, pp. 2790–2803, 2010.
[32]  M. M. Mansour and N. R. Shanbhag, “A 640-Mb/s 2048-bit programmable LDPC decoder chip,” IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp. 684–697, 2006.
[33]  W. Weihuang, C. Gwan, and K. Gunnam, “Low-power VLSI design of LDPC decoder using DVFS for AWGN channels,” in Proceedings of the 22nd International Conference on VLSI Design, pp. 51–56, January 2009.
[34]  D. N. Truong, W. H. Cheng, T. Mohsenin, et al., “A 167-processor computational platform in 65 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1130–1144, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133