全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
VLSI Design  2013 

Low-Power Adiabatic Computing with Improved Quasistatic Energy Recovery Logic

DOI: 10.1155/2013/726324

Full-Text   Cite this paper   Add to My Lib

Abstract:

Efficiency of adiabatic logic circuits is determined by the adiabatic and non-adiabatic losses incurred by them during the charging and recovery operations. The lesser will be these losses circuit will be more energy efficient. In this paper, a new approach is presented for minimizing power consumption in quasistatic energy recovery logic (QSERL) circuit which involves optimization by removing the nonadiabatic losses completely by replacing the diodes with MOSFETs whose gates are controlled by power clocks. Proposed circuit inherits the advantages of quasistatic ERL (QSERL) family but is with improved power efficiency and driving ability. In order to demonstrate workability of the newly developed circuit, a 4 × 4 bit array multiplier circuit has been designed. A mathematical expression to calculate energy dissipation in proposed inverter is developed. Performance of the proposed logic (improved quasistatic energy recovery logic (IQSERL)) is analyzed and compared with CMOS and reported QSERL in their representative inverters and multipliers in VIRTUOSO SPECTRE simulator of Cadence in 0.18?μm UMC technology. In our proposed (IQSERL) inverter the power efficiency has been improved to almost 20% up to 50?MHz and 300?fF external load capacitance in comparison to CMOS and QSERL circuits. 1. Introduction With increased scaling in CMOS technology, modern designs are capable of performing very high speed computations as the complexity, and the number of devices on a given IC is no longer an issue. Much of the research efforts in the recent decades have been dedicated to improving the speed of digital systems. Thus, high speed computation has become an expected norm for average users. Higher switching activities lead to higher power consumption. Many methodologies have been proposed so far [1] which intended to reduce power consumption, among them adiabatic logic technique [2] is promising alternative. Concept of adiabatic logic circuits is generated from the adiabatic process which is a thermodynamically reversible process that is operated slowly, so that total energy dissipation tends towards zero. Energy dissipated in a circuit depends on how fast the circuit switches or charges and discharges which means that it depends on the approach taken to design the circuit. When the rate of charging will be lower, less amount of energy is drawn from the source. Adiabatic circuits also have another mechanism for energy saving [3] that is based on recovering the energy stored in nodal capacitances. The quality factor of any adiabatic process is also known as degree of

References

[1]  S. Wairya, R. K. Nagaria, and S. Tiwari, “Performance analysis of high speed hybrid CMOS full adder circuits for low voltage VLSI design,” VLSI Design, Article ID 173079, pp. 1–18, 2012.
[2]  V. K. De and J. D. Meindl, “Opportunities for non-dissipative computation,” in Proceedings of the 9th Annual IEEE International ASIC Conference and Exhibit, pp. 297–300, September 1996.
[3]  W. C. Athas, L. Svensson, J. G. Koller, N. Tzartzanis, and E. Y.-C. Chou, “Low-power digital systems based on adiabatic-switching principles,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 2, no. 4, pp. 398–407, 1994.
[4]  A. G. Dickinson and J. S. Denker, “Adiabatic dynamic logic,” IEEE Journal of Solid-State Circuits, vol. 30, no. 3, pp. 311–315, 1995.
[5]  V. S. Sathe, J.-Y. Chueh, and M. C. Papaefthymiou, “Energy-efficient GHz-class charge-recovery logic,” IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 38–46, 2007.
[6]  S. Wisetphanichkij and K. Dejhan, “The combinational and sequential adiabatic circuit design and its applications,” Circuits, Systems, and Signal Processing, vol. 28, no. 4, pp. 523–534, 2009.
[7]  M.-E. Hwang, A. Raychowdhury, and K. Roy, “Energy-recovery techniques to reduce on-chip power density in molecular nanotechnologies,” IEEE Transactions on Circuits and Systems I, vol. 52, no. 8, pp. 1580–1589, 2005.
[8]  P. Wang and J. Yu, “Design of two-phase sinusoidal power clock and clocked transmission gate adiabatic logic circuit,” Journal of Electronics, vol. 24, no. 2, pp. 225–231, 2007.
[9]  Y. Ye and K. Roy, “QSERL: quasi-static energy recovery logic,” IEEE Journal of Solid-State Circuits, vol. 36, no. 2, pp. 239–248, 2001.
[10]  N. S. S. Reddy, M. Satyam, and K. L. Kishore, “Cascadable adiabatic logic circuits for low-power applications,” IET Circuits, Devices and Systems, vol. 2, no. 6, pp. 518–526, 2008.
[11]  Y. Moon and D.-K. Jeong, “An efficient charge recovery logic circuit,” IEEE Journal of Solid-State Circuits, vol. 31, no. 4, pp. 514–522, 1996.
[12]  D. Maksimovi?, V. G. Oklobd?ija, B. Nikoli?, and K. W. Current, “Clocked CMOS adiabatic logic with integrated single-phase power-clock supply,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 8, no. 4, pp. 460–463, 2000.
[13]  A. Blotti and R. Saletti, “Ultralow-power adiabatic circuit semi-custom design,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 11, pp. 1248–1253, 2004.
[14]  C.-S. A. Gong, M.-T. Shiue, C.-T. Hong, and K.-W. Yao, “Analysis and design of an efficient irreversible energy recovery logic in 0.18?μm CMOS,” IEEE Transactions on Circuits and Systems, vol. 55, no. 9, pp. 2595–2607, 2008.
[15]  N. Anuar, Y. Takahashi, and T. Sekine, “Two phase clocked adiabatic static CMOS logic and its logic family,” Journal of Semiconductor Technology and Science, vol. 10, no. 1, pp. 1–10, 2010.
[16]  S. Upadhyay, R. K. Nagaria, and R. A. Mishra, “Complementary energy path adiabatic logic based full adder circuit,” A Journal of World Academy of Science Engineering & Technology, vol. 66, pp. 161–167, 2012.
[17]  M. Khatir, A. Ejlali, and A. Moradi, “Improving the energy efficiency of reversible logic circuits by the combined use of adiabatic styles,” Integration, the VLSI Journal, vol. 44, pp. 12–21, 2011.
[18]  N. A. Nayan, Y. Takahashi, and T. Sekine, “LSI implementation of a low-power 4×4-bit array two-phase clocked adiabatic static CMOS logic multiplier,” Microelectronics Journal, vol. 43, no. 4, pp. 244–249, 2012.
[19]  S. Upadhyay, R. A. Mishra, R. K. Nagaria, and S. P. Singh, “DFAL: diode free adiabatic logic circuits,” International Scholarly Research Network, vol. 2013, Article ID 673601, 12 pages, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133