Background. TB is a global pandemic disease. All TB control programs were not successful due to the emergence of multidrug resistance in M. tuberculosis strains. Objective of the present study was to detect the rate of MDR-MTB in this part of India. Methods. One hundred and thirty clinical MTB strains isolated from patients on treatment and confirmed as MTB by MPT64 antigen detection were tested for drug susceptibility against Streptomycin, INH, Rifampicin, and Ethambutol by MBBact automated system. Result. Thirty-two were MDRs (25.61%). 31.2%, 28%, 17.6%, and 21.6% were resistant to INH, RIF, Ethambutol, and Streptomycin, respectively. Resistance to either INH or Rifampicin was 20.8% and 13.88%, respectively. Combined INH and Rifampicin resistance was seen in 18.05% isolates. Conclusion. Drug resistance rate is high in patients treated previously and who have been irregular on treatment. 1. Introduction Tuberculosis (TB) is the second leading cause of death from an infectious disease worldwide after human immunodeficiency virus (HIV). Inspite of free supply of drugs, 1.4 million TB deaths occurred worldwide in 2011. Recently, World Health Organization has estimated that 3.7% of new TB cases are MDRs. MDR-TB global average rate is 20%. About 9% of these cases also are resistant to at least one injectable second line antitubercular drugs. These strains are called extensively drug resistant (XDR) TB cases [1]. During the middle of twentieth century, tuberculosis rate in Europe and North America decreased to an extent that it was thought as totally eradicated. Health care providers started to announce that TB is eradicated. TB sanatoriums were closed. But M. tuberculosis bounced back in 1980s with a vengeance and has spread all over the world. Unholy nexus between TB and HIV has further increased not only TB rate but also mortality. Drug resistance (DR) in MTB is a manmade problem. Defaulting by the patient, poor quality of drugs and lack of awareness have contributed to the present grim situation of TB management. In 1993, increasing reports of MDRTB were noted from USA [2] and WHO declared TB as global emergency [3]. WHO’s millennium development goal to reduce TB by 2015 has failed. Drug resistance in MTB is manmade and is a consequence of suboptimal regimens and treatment interruptions [4]. MTB strains exhibiting resistance to INH and Rifampicin, the two main first line drugs, are designated as MDRTB strains. These MDR strains require prolonged treatment using second line drugs which are highly toxic and less effective [5, 6]. WHO and International
References
[1]
World Health Organization, Global Tuberculosis Report, World Health Organization, Geneva, Switzerland, 2012.
[2]
T. R. Frieden, T. Sterling, A. Pablos-Mendez, J. O. Kilburn, G. M. Cauthen, and S. W. Dooley, “The emergence of drug-resistant tuberculosis in New York City,” The New England Journal of Medicine, vol. 328, no. 8, pp. 521–526, 1993.
[3]
A. Kochi, “The global tuberculosis situation and the new control strategy of the World Health Organization,” Tubercle, vol. 72, no. 1, pp. 1–6, 1991.
[4]
World Health Organization, WHO Guidelines for the Programmatic Management of Drug Resistant Tuberculosis, World Health Organization, Geneva, Switzerland, 2006.
[5]
S. D. Lawn and R. Wilkinson, “Extensively drug resistant tuberculosis,” British Medical Journal, vol. 333, no. 7568, pp. 559–560, 2006.
[6]
C. Juan, S. C. Palomino, and R. Viviana, Tuberculosis 2007—From Basic Science to Patient Care, 2007.
[7]
World Health Organization, “Anti-tuberculosis drug resistance in the world (the WHO/IUATLD global project on anti-tuberculosis drug resistance surveillance 1994–1997),” Tech. Rep. WHO/TB/97-229, World Health Organization.
[8]
Revised National Tuberculosis Control Programme Training Manual for Mycobacterium tuberculosis Culture and Drug Susceptibility Testing, Central Tuberculosis Division, New Delhi, India, 2009.
[9]
V. G. Kumar, T. A. Urs, and R. R. Ranganath, “MPT 64 Antigen detection for rapid confirmation of M.tuberculosis isolates,” BMC Research Notes, vol. 4, article 79, 2011.
[10]
S. Sethi, A. Mewara, S. K. Dhatwalia, et al., “Prevalence of multidrug resistance in Mycobacterium tuberculosis isolates from HIV seropositive and seronegative patients with pulmonary tuberculosis in north India,” BioMed Central Infectious Disease, vol. 13, article 137, 2013.
[11]
C. N. Paramasivan, K. Bhaskaran, P. Venkataraman, V. Chandrasekaran, and P. R. Narayanan, “Surveillance of drug resistance in tuberculosis in the state of Tamil Nadu,” Indian Journal of Tuberculosis, vol. 47, pp. 27–33, 2000.
[12]
D. Lina, M. Priya, and C. Sweta, “Drug resistance in tuberculosis,” Bombay Hospital Journal, 1999, http://bhj.org/journal/1999_4103_july99/original_253.htm.
[13]
S. S. Trivedi and S. G. Desai, “Primary antituberculosis drug resistance and acquired rifampicin resistance in Gujarat, India,” Tubercle, vol. 69, no. 1, pp. 37–42, 1988.
[14]
J. Rawat, G. Sindhwani, and R. Dua, “Five-year trend of acquired antitubercular drug resistance in patients attending a tertiary care hospital at Dehradun (Uttarakhand),” Lung India, vol. 26, no. 4, pp. 106–108, 2009.
[15]
A. Khanna, V. S. Raj, B. Tarai et al., “Emergence and molecular characterization of extensively drug-resistant Mycobacterium tuberculosis clinical isolates from the Delhi region in India,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 11, pp. 4789–4793, 2010.
[16]
P. Narang, et al., Personal communication.
[17]
N. K. Jain, K. K. Chopra, and G. Prasad, “Initial and acquired Isoniazid and Rifampicin resistance to M. tuberculosis and its implications for treatment,” Indian Journal of Tuberculosis, vol. 39, no. 2, pp. 121–124, 1992.
[18]
S. Vijay, V. H. Balasangameshwara, P. S. Jagannatha, V. N. Saroja, B. Shivashankar, and P. Jagota, “Re-treatment outcome of smear positive tuberculosis cases under DOTs in Bangalore city,” Indian Journal of Tuberculosis, vol. 49, pp. 195–204, 2002.
[19]
T. Dam, M. Isa, and M. Bose, “Drug-sensitivity profile of clinical Mycobacterium tuberculosis isolates—a retrospective study from a chest-disease institute in India,” Journal of Medical Microbiology, vol. 54, no. 3, pp. 269–271, 2005.
[20]
C. N. Paramasivan, R. Venkataraman, V. Chandrasekaran, S. Bhat, and R. R. Narayanan, “Surveillance of drug resistance in tuberculosis in two districts of South India,” International Journal of Tuberculosis and Lung Disease, vol. 6, no. 6, pp. 479–484, 2002.
[21]
P. G. Gopi, R. S. Vallishayee, B. N. Appegowda, et al., “A tuberculosis prevalence survey based on symptoms questioning and sputum examination,” Indian Journal of Tuberculosis, vol. 44, pp. 171–180, 1997.
[22]
A. K. Janmeja and B. Raj, “Acquired drug resistance in tuberculosis in Harayana, India,” Journal of Association of Physicians of India, vol. 46, no. 2, pp. 194–198, 1998.
[23]
S. S. Negi, S. Gupta, and S. Lal, “Drug resistance in tuberculosis in Delhi: a 2 year profile (2001-2002),” Journal of Communicable Diseases, vol. 35, no. 2, pp. 74–81, 2003.
[24]
R. Ramachandran, S. Nalini, V. Chandrasekar et al., “Surveillance of drug-resistant tuberculosis in the state of Gujarat, India,” International Journal of Tuberculosis and Lung Disease, vol. 13, no. 9, pp. 1154–1160, 2009.
[25]
World Health Organization, “Policy statement on preventive therapy against tuberculosis in people living with HIV,” Tech. Rep. WHO/TB/98.255, World Health Organization, Geneva, Switzerland, 1998.