To improve the diagnosis capacity of rotor vibration fault in stochastic process, an effective fault diagnosis method (named Process Power Spectrum Entropy (PPSE) and Support Vector Machine (SVM) (PPSE-SVM, for short) method) was proposed. The fault diagnosis model of PPSE-SVM was established by fusing PPSE method and SVM theory. Based on the simulation experiment of rotor vibration fault, process data for four typical vibration faults (rotor imbalance, shaft misalignment, rotor-stator rubbing, and pedestal looseness) were collected under multipoint (multiple channels) and multispeed. By using PPSE method, the PPSE values of these data were extracted as fault feature vectors to establish the SVM model of rotor vibration fault diagnosis. From rotor vibration fault diagnosis, the results demonstrate that the proposed method possesses high precision, good learning ability, good generalization ability, and strong fault-tolerant ability (robustness) in four aspects of distinguishing fault types, fault severity, fault location, and noise immunity of rotor stochastic vibration. This paper presents a novel method (PPSE-SVM) for rotor vibration fault diagnosis and real-time vibration monitoring. The presented effort is promising to improve the fault diagnosis precision of rotating machinery like gas turbine. 1. Introduction Vibration is a momentous fault source of rotating machinery like an aeroengine and seriously impacts on the security and reliability of machine system operation [1]. With the development of the high performance and high reliability of rotating machinery, vibration fault needs to be predicted and inhibited early [1–3]. Therefore, how to predict and control rotor vibration faults is one of hot issues in preventing the failures of mechanical system, which leads to the advance of feasible and effective fault diagnosis methods [3–8]. However, most of present vibration analysis techniques need a mass of vibration samples to establish a fault diagnosis model to diagnose the vibration faults from a qualitative perspective. In fact, these fault analysis methods possess some blindness in fault diagnosis, which seriously influences diagnosis accuracy, due to being short of describing diagnosis results from a process and quantitative perspective. Meanwhile, it is always difficult to gain large number of vibration fault data. In order to improve the validity of fault diagnosis, the process and quantitative factors should be considered to ascertain fault types, failure severity, fault location, and even development tendency. The development of information
References
[1]
D. J. Ewins, “Control of vibration and resonance in aero engines and rotating machinery—an overview,” International Journal of Pressure Vessels and Piping, vol. 87, no. 9, pp. 504–510, 2010.
[2]
F. Al-Badour, M. Sunar, and L. Cheded, “Vibration analysis of rotating machinery using time-frequency analysis and wavelet techniques,” Mechanical Systems and Signal Processing, vol. 25, no. 6, pp. 2083–2101, 2011.
[3]
C. W. Fei and G. C. Bai, “Wavelet correlation feature scale entropy and fuzzy support vector machine approach for aeroengine whole-body vibration fault diagnosis,” Shock and Vibration, vol. 20, no. 2, pp. 341–349, 2013.
[4]
P. W. Tse, S. Gontarz, and X. J. Wang, “Enhanced eigenvector algorithm for recovering multiple sources of vibration signals in machine fault diagnosis,” Mechanical Systems and Signal Processing, vol. 21, no. 7, pp. 2794–2813, 2007.
[5]
J.-D. Wu and C.-H. Liu, “An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network,” Expert Systems with Applications, vol. 36, no. 3, pp. 4278–4286, 2009.
[6]
L. A. Overbey and M. D. Todd, “Dynamic system change detection using a modification of the transfer entropy,” Journal of Sound and Vibration, vol. 322, no. 1-2, pp. 438–453, 2009.
[7]
L. Qu, L. Li, and J. Lee, “Enhanced diagnostic certainty using information entropy theory,” Advanced Engineering Informatics, vol. 17, no. 3-4, pp. 141–150, 2003.
[8]
H. Cui, L. Zhang, R. Kang, and X. Lan, “Research on fault diagnosis for reciprocating compressor valve using information entropy and SVM method,” Journal of Loss Prevention in the Process Industries, vol. 22, no. 6, pp. 864–867, 2009.
[9]
X. Xing, “Physical entropy, information entropy and their evolution equations,” Science in China A: Mathematics, Physics, Astronomy, vol. 44, no. 10, pp. 1331–1339, 2001.
[10]
H. Endo and R. B. Randall, “Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter,” Mechanical Systems and Signal Processing, vol. 21, no. 2, pp. 906–919, 2007.
[11]
J. Wang, Y. T. Ai, X. F. Liu, et al., “Study on quantitative diagnosis method of rotor vibration faults based on process information entropy,” in Proceedings of the 2nd International Conference on Computer Engineering and Technology (ICCET '10), pp. V5-407–V5-411, Chengdu, China, April 2010.
[12]
J. Ye, “Fault diagnosis of turbine based on fuzzy cross entropy of vague sets,” Expert Systems with Applications, vol. 36, no. 4, pp. 8103–8106, 2009.
[13]
N. García-Pedrajas and D. Ortiz-Boyer, “An empirical study of binary classifier fusion methods for multiclass classification,” Information Fusion, vol. 12, no. 2, pp. 111–130, 2011.
[14]
W. Ding and J. Yuan, “Spike sorting based on multi-class support vector machine with superposition resolution,” Medical and Biological Engineering and Computing, vol. 46, no. 2, pp. 139–145, 2008.
[15]
Z.-W. Guo and G.-C. Bai, “Classification using least squares support vector machine for reliability analysis,” Applied Mathematics and Mechanics, vol. 30, no. 7, pp. 853–864, 2009.
[16]
A. Widodo and B.-S. Yang, “Support vector machine in machine condition monitoring and fault diagnosis,” Mechanical Systems and Signal Processing, vol. 21, no. 6, pp. 2560–2574, 2007.
[17]
S.-F. Yuan and F.-L. Chu, “Support vector machines-based fault diagnosis for turbo-pump rotor,” Mechanical Systems and Signal Processing, vol. 20, no. 4, pp. 939–952, 2006.
[18]
M. Saimurugan, K. I. Ramachandran, V. Sugumaran, and N. R. Sakthivel, “Multi component fault diagnosis of rotational mechanical system based on decision tree and support vector machine,” Expert Systems with Applications, vol. 38, no. 4, pp. 3819–3826, 2011.
[19]
W. T. Peter, Y. H. Peng, and R. Yam, “Wavelet analysis and envelop detection for rolling element bearing fault diagnosis their effectives and flexibilities,” Journal of Vibration and Acoustics, vol. 12, no. 3, pp. 303–310, 2000.