%0 Journal Article %T Quantitative Diagnosis of Rotor Vibration Fault Using Process Power Spectrum Entropy and Support Vector Machine Method %A Cheng-Wei Fei %A Guang-Chen Bai %A Wen-Zhong Tang %A Shuang Ma %J Shock and Vibration %D 2014 %R 10.1155/2014/957531 %X To improve the diagnosis capacity of rotor vibration fault in stochastic process, an effective fault diagnosis method (named Process Power Spectrum Entropy (PPSE) and Support Vector Machine (SVM) (PPSE-SVM, for short) method) was proposed. The fault diagnosis model of PPSE-SVM was established by fusing PPSE method and SVM theory. Based on the simulation experiment of rotor vibration fault, process data for four typical vibration faults (rotor imbalance, shaft misalignment, rotor-stator rubbing, and pedestal looseness) were collected under multipoint (multiple channels) and multispeed. By using PPSE method, the PPSE values of these data were extracted as fault feature vectors to establish the SVM model of rotor vibration fault diagnosis. From rotor vibration fault diagnosis, the results demonstrate that the proposed method possesses high precision, good learning ability, good generalization ability, and strong fault-tolerant ability (robustness) in four aspects of distinguishing fault types, fault severity, fault location, and noise immunity of rotor stochastic vibration. This paper presents a novel method (PPSE-SVM) for rotor vibration fault diagnosis and real-time vibration monitoring. The presented effort is promising to improve the fault diagnosis precision of rotating machinery like gas turbine. 1. Introduction Vibration is a momentous fault source of rotating machinery like an aeroengine and seriously impacts on the security and reliability of machine system operation [1]. With the development of the high performance and high reliability of rotating machinery, vibration fault needs to be predicted and inhibited early [1¨C3]. Therefore, how to predict and control rotor vibration faults is one of hot issues in preventing the failures of mechanical system, which leads to the advance of feasible and effective fault diagnosis methods [3¨C8]. However, most of present vibration analysis techniques need a mass of vibration samples to establish a fault diagnosis model to diagnose the vibration faults from a qualitative perspective. In fact, these fault analysis methods possess some blindness in fault diagnosis, which seriously influences diagnosis accuracy, due to being short of describing diagnosis results from a process and quantitative perspective. Meanwhile, it is always difficult to gain large number of vibration fault data. In order to improve the validity of fault diagnosis, the process and quantitative factors should be considered to ascertain fault types, failure severity, fault location, and even development tendency. The development of information %U http://www.hindawi.com/journals/sv/2014/957531/