Mimicry is a fascinating topic, in particular when viewed in terms of selective forces and evolutionary strategies. Mimicry is a system involving a signaller, a signal receiver, and a model and has evolved independently many times in plants and animals. There are several ways of classifying mimicry based on the interactions and cost-benefit scenarios of the parties involved. In this review, I briefly outline the dynamics of the most common types of mimicry to then apply it to some of the spider-ant associative systems known to date. In addition, this review expands on the strategies that ant-associating (in particular ant-mimicking) spiders have developed to minimise the costs of living close to colonies of potentially dangerous models. The main strategy that has been noted to date is either chemical mimicry or actively avoiding contact with ants. If these strategies warrant protection for the spider (living close to potentially dangerous models), then the benefits of ant associations would outweigh the costs, and the association will prevail. 1. Introduction The phenomenon of mimicry has intrigued numerous biologists, prompting studies from natural history to behaviour, ecology, evolution, and most recently genomics, to name but a few [1]. Perhaps mimicry so readily attracts attention because it is an evident example of natural selection in action. Mimicry—or the resemblance of one organism (or certain aspects of) to another, taxonomically unrelated one—almost always involves three parties: the signaller (mimic), the signal receiver (or operator), and the model. The mimics in these cases must have a selective advantage over nonmimics, and therefore the particular phenotype is fixed in these populations. The classification of mimicry largely depends on the functions of the parties involved and has, based on this scheme, been subdivided down to 40 theoretical classes, or types of mimicry [2], though the focus is generally on the most common types: Batesian, Müllerian, and aggressive mimicry. Batesian mimicry, named after H. W. Bates, pioneer in the study of mimicry in Amazonian butterflies [3], is defined by a palatable mimic gaining protection from predators (the signal receiver in this case), by resembling a noxious or unpalatable model organism. In Müllerian mimicry, the line of “palatability” between mimic and model is less clear, with emphasis being placed on a certain phenotype of various organisms being reinforced and acting as a deterrent for predators. A third type of mimicry commonly encountered in nature is aggressive mimicry, so-called
References
[1]
G. D. Ruxton, T. N. Sherratt, and M. Speed, Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry, Oxford University Press, Oxford, UK, 2004.
[2]
R. I. Vane-Wright, “A unified classification of mimetic resemblances,” Biological Journal of the Linnean Society, vol. 8, no. 1, pp. 25–56, 1976.
[3]
H. W. Bates, “Contributions to an insect fauna of the Amazon valley. Lepidoptera: Heliconidae,” Transactions of the Linnean Society London, vol. 23, no. 3, pp. 495–566, 1862.
[4]
J. A. Welbergen and N. B. Davies, “A parasite in wolf's clothing: hawk mimicry reduces mobbing of cuckoos by hosts,” Behavioral Ecology, vol. 22, no. 3, pp. 574–579, 2011.
[5]
K. L. Cheney and N. J. Marshall, “Mimicry in coral reef fish: how accurate is this deception in terms of color and luminance?” Behavioral Ecology, vol. 20, part 3, pp. 459–468, 2009.
[6]
W. Wickler, Mimicry in Plants and Animals, McGraw-Hill, New York, NY, USA, 1968.
[7]
U. Nur, “Evolutionary rates of models and mimics in Batesian mimicry,” The American Naturalist, vol. 104, no. 939, pp. 477–486, 1970.
[8]
M. Edmunds, Defence in Animals—A Survey of Anti-Predator Defences, Longman, Harlow, UK, 1974.
[9]
D. Charlesworth and B. Charlesworth, “Theoretical genetics of Batesian mimicry. I. Single locus models,” Journal of Theoretical Biology, vol. 55, no. 2, pp. 283–303, 1975.
[10]
C. Matessi and R. Cori, “Models of population genetics of Batesian mimicry,” Theoretical Population Biology, vol. 3, no. 1, pp. 41–68, 1972.
[11]
O. H. Holen and R. A. Johnstone, “The evolution of mimicry under constraints,” The American Naturalist, vol. 164, no. 5, pp. 598–613, 2004.
[12]
O. H. Holen and R. A. Johnstone, “Context-dependent discrimination and the evolution of mimicry,” The American Naturalist, vol. 167, no. 3, pp. 377–389, 2006.
[13]
W. Dittrich, F. Gilbert, P. Green, P. Mcgregor, and D. Grewcock, “Imperfect mimicry: a pigeon’s perspective,” Proceedings of the Royal Society B, vol. 251, no. 1332, pp. 195–200, 1993.
[14]
M. Edmunds, “Why are there good and poor mimics?” Biological Journal of the Linnean Society, vol. 70, no. 3, pp. 459–466, 2000.
[15]
T. N. Sherratt, “The evolution of imperfect mimicry,” Behvioral Ecology, vol. 13, part 6, pp. 821–826, 2002.
[16]
S. Pekár and M. Jarab, “Assessment of color and behavioral resemblance to models by inaccurate myrmecomorphic spiders (Araneae),” Invertebrate Biology, vol. 130, no. 1, pp. 83–90, 2011.
[17]
R. A. Johnstone, “The evolution of inaccurate mimics,” Nature, vol. 418, no. 6897, pp. 524–526, 2002.
[18]
M. P. Speed and G. D. Ruxton, “Imperfect Batesian mimicry and the conspicuousness costs of mimetic resemblance,” The American Naturalist, vol. 176, no. 1, pp. E1–E14, 2010.
[19]
S. Pekár, M. Jarab, L. Fromhage, and M. E. Herberstein, “Is the evolution of inaccurate mimicry a result of selection by a suite of predators? A case study using myrmecomorphic spiders,” The American Naturalist, vol. 178, no. 1, pp. 124–134, 2011.
[20]
J. E. Randall, “A review of mimicry in marine fishes,” Zoological Studies, vol. 44, no. 3, pp. 299–328, 2005.
[21]
J. D. McIver and G. Stonedahl, “Myrmecomorphy: morphological and behavioral mimicry of ants,” Annual Review of Entomology, vol. 38, pp. 351–379, 1993.
[22]
B. H?lldobler and E. O. Wilson, The Ants, The Belknap Press of Harvard University Press, Cambridge, Mass, USA, 1990.
[23]
R. F. Foelix, Biology of Spiders, Oxford University Press, Oxford, UK, 3rd edition, 2011.
[24]
P. E. Cushing, “Myrmecomorphy and myrmecophily in spiders: a review,” Florida Entomologist, vol. 80, no. 2, pp. 165–193, 1997.
[25]
P.E. Cushing, “Spider-ant associations: an updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders,” Psyche, vol. 2012, Article ID 151989, 23 pages, 2012.
[26]
R. R. Jackson and X. J. Nelson, “Specialised exploitation of ants (Hymenoptera: Formicidae) by spiders (Araneae),” Myrmecological News, vol. 17, pp. 33–49, 2012.
[27]
X. J. Nelson and R. R. Jackson, “How spiders practice aggressive and Batesian mimicry,” Current Zoology, vol. 58, part 4, pp. 620–629, 2012.
[28]
M. A. Fürst, M. Durey, and D. R. Nash, “Testing the adjustable threshold model for intruder recognition on Myrmica ants in the context of a social parasite,” Proceedings of the Royal Society B, vol. 279, pp. 516–522, 2012.
[29]
J. Reiskind, “Ant-mimicry in Panamanian clubionid and salticid spiders (Araneae: Clubionidae, Salticidae),” Biotropica, vol. 9, no. 1, pp. 1–8, 1977.
[30]
F. S. Ceccarelli, “Behavioral mimicry in Myrmarachne species (Araneae, Salticidae) from North Queensland, Australia,” Journal of Arachnology, vol. 36, no. 2, pp. 344–351, 2008.
[31]
R. R. Jackson, “The biology of ant-like jumping spiders: intraspecific interactions of Myrmarachne lupata (Araneae, Salticidae),” Zoological Journal of the Linnean Society, vol. 76, no. 4, pp. 293–319, 1982.
[32]
J. L. Mercier, A. Lenoir, and A. Dejean, “Ritualised versus aggressive behaviours displayed by Polyrhachis iaboriosa (F. Smith) during intraspecific competition,” Behavioural Processes, vol. 41, no. 1, pp. 39–50, 1997.
[33]
M. C. Hedin and W. P. Maddison, “A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae),” Molecular Phylogenetics and Evolution, vol. 18, no. 3, pp. 386–403, 2001.
[34]
J. Proszynski, “Monograph of Salticidae (Araneae) of the World,” 2012, http://www.peckhamia.com/salticidae/.
[35]
B. H?lldobler, “Communication between ants and their guests,” Scientific American, vol. 224, pp. 86–93, 1971.
[36]
P. E. Cushing, “Population structure of the ant nest symbiont Masoncus pogonophilus (Araneae: Linyphiidae),” Annals of the Entomological Society of America, vol. 91, part 5, pp. 626–631, 1998.
[37]
R. A. Allan and M. A. Elgar, “Exploitation of the green tree ant, Oecophylla smaragdina, by the salticid spider Cosmophasis bitaeniata,” Australian Journal of Zoology, vol. 49, no. 2, pp. 129–137, 2001.
[38]
M. Edmunds, “Does mimicry of ants reduce predation by wasps on salticid spiders?” Memoirs—Queensland Museum, vol. 33, no. 2, pp. 507–512, 1993.
[39]
X. J. Nelson, R. R. Jackson, D. Li, A. T. Barrion, and G. B. Edwards, “Innate aversion to ants (Hymenoptera: Formicidae) and ant mimics: experimental findings from mantises (Mantodea),” Biological Journal of the Linnean Society, vol. 88, no. 1, pp. 23–32, 2006.
[40]
B. Cutler, “Reduced predation on the antlike jumping spider Synageles occidentalis (Araneae: Salticidae),” Journal of Insect Behavior, vol. 4, part 3, pp. 401–407, 1991.
[41]
C. A. Durkee, M. R. Weiss, and D. B. Uma, “Ant mimicry lessens predation on a North American jumping spider by larger salticid spiders,” Environmental Entomology, vol. 40, part 5, pp. 1223–1231, 2011.
[42]
X. J. Nelson, “A predator’s perspective of the accuracy of ant mimicry in spiders,” Psyche, vol. 2012, Article ID 168549, 5 pages, 2012.
[43]
X. J. Nelson and R. R. Jackson, “Vision-based innate aversion to ants and ant mimics,” Behavioral Ecology, vol. 17, no. 4, pp. 676–681, 2006.
[44]
J. N. Huang, R. C. Cheng, D. Li, and I. M. Tso, “Salticid predation as one potential driving force of ant mimicry in jumping spiders,” Proceedings of the Royal Society B, vol. 278, no. 1710, pp. 1356–1364, 2011.
[45]
B. H?lldobler, “Multimodal signals in ant communication,” Journal of Comparative Physiology A, vol. 184, no. 2, pp. 129–141, 1999.
[46]
K. Wing, “Tutelina similis (araneae: Salticidae): an ant mimic that feeds on ants,” Journal of the Kansas Entomological Society, vol. 56, no. 1, pp. 55–58, 1983.
[47]
P. S. Oliveira and I. Sazima, “The adaptive bases of ant-mimicry in a neotropical aphantochilid spider (Araneae: Aphantochilidae),” Biological Journal of the Linnean Society, vol. 22, no. 2, pp. 145–155, 1984.
[48]
X. J. Nelson and R. R. Jackson, “Aggressive use of Batesian mimicry by an ant-like jumping spider,” Biology Letters, vol. 5, no. 6, pp. 755–757, 2009.
[49]
A. P. Mathew, “Transformational deceptive resemblance as seen in the life history of a plant bug (Riptortus pedestris), and of a mantis (Evantissa pulchra),” Journal of the Bombay Natural History Society, vol. 37, pp. 803–813, 1935.
[50]
M. Edmunds, “On the association between Myrmarachne spp. (Salticidae) and ants,” Bulletin of the British Arachnological Society, vol. 4, pp. 149–160, 1978.
[51]
S. D. Pollard, “Consequences of sexual selection on feeding in male jumping spiders (Araneae: Salticidae),” Journal of Zoology, vol. 234, no. 2, pp. 203–208, 1994.
[52]
X. J. Nelson and R. R. Jackson, “Compound mimicry and trading predators by the males of sexually dimorphic Batesian mimics,” Proceedings of the Royal Society B, vol. 273, no. 1584, pp. 367–372, 2006.
[53]
X. J. Nelson and R. R. Jackson, “Collective Batesian mimicry of ant groups by aggregating spiders,” Animal Behaviour, vol. 78, no. 1, pp. 123–129, 2009.
[54]
F. S. Ceccarelli and R. H. Crozier, “Dynamics of the evolution of Batesian mimicry: molecular phylogenetic analysis of ant-mimicking Myrmarachne (Araneae: Salticidae) species and their ant models,” Journal of Evolutionary Biology, vol. 20, no. 1, pp. 286–295, 2007.
[55]
X. J. Nelson, “Polymorphism in an ant mimicking jumping spider,” Journal of Arachnology, vol. 38, no. 1, pp. 139–141, 2010.
[56]
X. J. Nelson, D. Li, and R. R. Jackson, “Out of the frying pan and into the fire: a novel trade-off for batesian mimics,” Ethology, vol. 112, no. 3, pp. 270–277, 2006.
[57]
X. J. Nelson, R. R. Jackson, and D. Li, “Conditional use of honest signaling by a Batesian mimic,” Behavioral Ecology, vol. 17, no. 4, pp. 575–580, 2006.
[58]
F. S. Ceccarelli, Dynamics of Salticid-Ant Mimicry Systems—A Study of Behavioural Ecology and Evolution in Two Genera of Ant-Associating Jumping Spiders, Lambert Academic Publishing, Saarbrücken, Germany, 2010.
[59]
B. H?lldobler, “Territorial behavior in the green tree ant (Oecophylla smaragdina),” Biotropica, vol. 15, no. 4, pp. 241–250, 1983.
[60]
X. J. Nelson, R. R. Jackson, G. B. Edwards, and A. T. Barrion, “Living with the enemy: jumping spiders that mimic weaver ants,” Journal of Arachnology, vol. 33, pp. 813–819, 2005.
[61]
X. J. Nelson and R. R. Jackson, “The influence of ants on the mating strategy of a myrmecophilic jumping spider (Araneae, Salticidae),” Journal of Natural History, vol. 43, no. 11-12, pp. 713–735, 2009.
[62]
R. A. Allan, R. J. Capon, W. V. Brown, and M. A. Elgar, “Mimicry of host cuticular hydrocarbons by salticid spider Cosmophasis bitaeniata that preys on larvae of tree ants Oecophylla smaragdina,” Journal of Chemical Ecology, vol. 28, no. 4, pp. 835–848, 2002.
[63]
M. A. Elgar and R. A. Allan, “Chemical mimicry of the ant Oecophylla smaragdina by the myrmecophilous spider Cosmophasis bitaeniata: is it colony-specific?” Journal of Ethology, vol. 24, no. 3, pp. 239–246, 2006.
[64]
M. A. Elgar and R. A. Allan, “Predatory spider mimics acquire colony-specific cuticular hydrocarbons from their ant model prey,” Naturwissenschaften, vol. 91, no. 3, pp. 143–147, 2004.
[65]
R. H. Crozier, P. S. Newey, E. A. Schlüns, and S. K. A. Robson, “A masterpiece of evolution Oecophylla weaver ants (Hymenoptera: Formicidae),” Myrmecological News, vol. 13, pp. 57–71, 2009.
[66]
K. Dettner and C. Liepert, “Chemical mimicry and camouflage,” Annual Review of Entomology, vol. 39, pp. 129–154, 1994.
[67]
C. von Beeren, R. Hashim, and V. Witte, “The social integration of a myrmecophilous spider does not depend exclusively on chemical mimicry,” Journal of Chemical Ecology, vol. 38, no. 3, pp. 262–271, 2012.
[68]
S. Pekar and P. Jiros, “Do ant mimics imitate cuticular hydrocarbons of their models?” Animal Behaviour, vol. 82, no. 5, pp. 1193–1199, 2011.
[69]
A. P. Mathew, “Observations on the habits of two spider mimics of the red ant, Oecophylla smaragdina (Fabr.),” Journal of the Bombay Natural History Society, vol. 52, pp. 249–263, 1944.
[70]
X. J. Nelson, “Visual cues used by ant-like jumping spiders to distinguish conspecifics from their models,” Journal of Arachnology, vol. 38, no. 1, pp. 27–34, 2010.
[71]
F. S. Ceccarelli, “Contact between Myrmarachne (Araneae: Salticidae) and ants,” Bulletin of the British Arachnological Society, vol. 14, part 2, pp. 54–58, 2007.
[72]
D. Charlesworth and B. Charlesworth, “Mimicry: the hunting of the supergene,” Current Biology, vol. 21, part 20, pp. R846–R848, 2011.