%0 Journal Article %T Ant-Mimicking Spiders: Strategies for Living with Social Insects %A Fadia Sara Ceccarelli %J Psyche %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/839181 %X Mimicry is a fascinating topic, in particular when viewed in terms of selective forces and evolutionary strategies. Mimicry is a system involving a signaller, a signal receiver, and a model and has evolved independently many times in plants and animals. There are several ways of classifying mimicry based on the interactions and cost-benefit scenarios of the parties involved. In this review, I briefly outline the dynamics of the most common types of mimicry to then apply it to some of the spider-ant associative systems known to date. In addition, this review expands on the strategies that ant-associating (in particular ant-mimicking) spiders have developed to minimise the costs of living close to colonies of potentially dangerous models. The main strategy that has been noted to date is either chemical mimicry or actively avoiding contact with ants. If these strategies warrant protection for the spider (living close to potentially dangerous models), then the benefits of ant associations would outweigh the costs, and the association will prevail. 1. Introduction The phenomenon of mimicry has intrigued numerous biologists, prompting studies from natural history to behaviour, ecology, evolution, and most recently genomics, to name but a few [1]. Perhaps mimicry so readily attracts attention because it is an evident example of natural selection in action. Mimicry¡ªor the resemblance of one organism (or certain aspects of) to another, taxonomically unrelated one¡ªalmost always involves three parties: the signaller (mimic), the signal receiver (or operator), and the model. The mimics in these cases must have a selective advantage over nonmimics, and therefore the particular phenotype is fixed in these populations. The classification of mimicry largely depends on the functions of the parties involved and has, based on this scheme, been subdivided down to 40 theoretical classes, or types of mimicry [2], though the focus is generally on the most common types: Batesian, M¨¹llerian, and aggressive mimicry. Batesian mimicry, named after H. W. Bates, pioneer in the study of mimicry in Amazonian butterflies [3], is defined by a palatable mimic gaining protection from predators (the signal receiver in this case), by resembling a noxious or unpalatable model organism. In M¨¹llerian mimicry, the line of ¡°palatability¡± between mimic and model is less clear, with emphasis being placed on a certain phenotype of various organisms being reinforced and acting as a deterrent for predators. A third type of mimicry commonly encountered in nature is aggressive mimicry, so-called %U http://www.hindawi.com/journals/psyche/2013/839181/