全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Royal Jelly Modulates Oxidative Stress and Apoptosis in Liver and Kidneys of Rats Treated with Cisplatin

DOI: 10.1155/2011/981793

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cisplatin (CDDP) is one of the most active cytotoxic agents in the treatment of cancer and has adverse side effects such as nephrotoxicity and hepatotoxicity. The present study was designed to determine the effects of royal jelly (RJ) against oxidative stress caused by CDDP injury of the kidneys and liver, by measuring tissue biochemical and antioxidant parameters and investigating apoptosis immunohistochemically. Twenty-four Sprague Dawley rats were divided into four groups, group C: control group received 0.9% saline; group CDDP: injected i.p. with cisplatin (CDDP, 7?mg?kg?1 body weight i.p., single dose); group RJ: treated for 15 consecutive days by gavage with RJ (300?mg/kg/day); group RJ + CDDP: treated by gavage with RJ 15 days following a single injection of CDDP. Malondialdehyde (MDA) and glutathione (GSH) levels, glutathione S-transferase (GST), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) activities were determined in liver and kidney homogenates, and the liver and kidney were also histologically examined. RJ elicited a significant protective effect towards liver and kidney by decreasing the level of lipid peroxidation (MDA), elevating the level of GSH, and increasing the activities of GST, GSH-Px, and SOD. In the immunohistochemical examinations were observed significantly enhanced apoptotic cell numbers and degenerative changes by cisplatin, but these histological changes were lower in the liver and kidney tissues of RJ + CDDP group. Besides, treatment with RJ lead to an increase in antiapoptotic activity hepatocytes and tubular epithelium. In conclusion, RJ may be used in combination with cisplatin in chemotherapy to improve cisplatin-induced oxidative stress parameters and apoptotic activity. 1. Introduction Cis-Diaminedichloroplatinum (II) (CDDP), commonly known as cisplatin, has been established as a potent chemotherapeutic agent administered to treat a variety of cancers such as ovarian, bladder, testicular, head and neck, and uterine cervix carcinomas [1, 2]. The major dose-limiting side effect of cisplatin is its nephrotoxicity and hepatotoxicity, and nephrotoxicity can result in severe nephropathy leading to acute renal failure. In several studies, it had been documented that injection of cisplatin produced a marked decrease in renal blood flow and glomerular filtration rate. The alterations in the kidney and liver functions induced by cisplatin are closely associated with an increase in lipid peroxidation and reactive oxygen species (ROS) in the tissues [3, 4]. In addition, cisplatin may have some mechanisms of

References

[1]  N. I. Weijl, F. J. Cleton, and S. Osanto, “Free radicals and antioxidants in chemotherapy-induced toxicity,” Cancer Treatment Reviews, vol. 23, no. 4, pp. 209–240, 1997.
[2]  M. K. Kuhlmann, G. Burkhardt, and H. K?hler, “Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application,” Nephrology Dialysis Transplantation, vol. 12, no. 12, pp. 2478–2480, 1997.
[3]  R. Baliga, Z. Zhang, M. Baliga, N. Ueda, and S. V. Shah, “Role of cytochrome P-450 as a source of catalytic iron in cisplatin- induced nephrotoxicity,” Kidney International, vol. 54, no. 5, pp. 1562–1569, 1998.
[4]  S. Silici, O. Ekmekcioglu, M. Kanbur, and K. Deniz, “The protective effect of royal jelly against cisplatin-induced renal oxidative stress in rats,” World Journal of Urology, vol. 29, no. 1, pp. 127–132, 2010.
[5]  J. Liu, Y. Liu, S. S. M. Habeebu, and C. D. Klaassen, “Metallothionein (MT)-null mice are sensitive to cisplatin-induced hepatotoxicity,” Toxicology and Applied Pharmacology, vol. 149, no. 1, pp. 24–31, 1998.
[6]  N. M. Martins, N. A. G. Santos, C. Curti, M. L. Bianchi, and M. C. Santos, “Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver,” Journal of Applied Toxicology, vol. 28, no. 3, pp. 337–344, 2008.
[7]  B. Halliwell and J. M. C. Gutteridge, “Lipid peroxidation: a radical chain reaction,” in Free Radicals in Biology and Medicine, B. Halliwell and J. M. C. Gutteridge, Eds., pp. 188–276, Oxford Clarendon Press, Oxford, UK, 1999.
[8]  K. A. Conklin, “Dietary antioxidants during cancer chemotherapy: impact on chemotherapeutic effectiveness and development of side effects,” Nutrition and Cancer, vol. 37, no. 1, pp. 1–18, 2000.
[9]  J. T. Coyle and P. Puttfarcken, “Oxidative stress, glutamate, and neurodegenerative disorders,” Science, vol. 262, no. 5134, pp. 689–695, 1993.
[10]  M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, “Free radicals, metals and antioxidants in oxidative stress-induced cancer,” Chemico-Biological Interactions, vol. 160, no. 1, pp. 1–40, 2006.
[11]  A. Atessahin, S. Yilmaz, I. Karahan, A. O. Ceribasi, and A. Karaoglu, “Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats,” Toxicology, vol. 212, no. 2-3, pp. 116–123, 2005.
[12]  M. I. Yousef, A. A. Saad, and L. K. El-Shennawy, “Protective effect of grape seed proanthocyanidin extract against oxidative stress induced by cisplatin in rats,” Food and Chemical Toxicology, vol. 47, no. 6, pp. 1176–1183, 2009.
[13]  K. Yapar, K. ?avu?o?lu, E. Oru?, and E. Yal?in, “Protective effect of royal jelly and green tea extracts effect against cisplatin-induced nephrotoxicity in mice: a comparative study,” Journal of Medicinal Food, vol. 12, no. 5, pp. 1136–1142, 2009.
[14]  M. Iraz, E. Ozerol, M. Gulec et al., “Protective effect of caffeic acid phenethyl ester (CAPE) administration on cisplatin-induced oxidative damage to liver in rat,” Cell Biochemistry and Function, vol. 24, no. 4, pp. 357–361, 2006.
[15]  M. Cemek, F. Aymelek, M. E. Büyükokuro?lu, et al., “Protective potential of Royal Jelly against carbon tetrachloride induced-toxicity and changes in the serum sialic acid levels,” Food and Chemical Toxicology, vol. 48, no. 10, pp. 2827–2832, 2010.
[16]  Y. Nakajima, K. Tsuruma, M. Shimazawa, S. Mishima, and H. Hara, “Comparison of bee products based on assays of antioxidant capacities,” BMC Complementary and Alternative Medicine, vol. 9, article no. 4, 2009.
[17]  S. Takaki-Doi, K. Hashimoto, M. Yamamura, and C. Kamei, “Antihypertensive activities of royal jelly protein hydrolysate and its fractions in spontaneously hypertensive rats,” Acta Medica Okayama, vol. 63, no. 1, pp. 57–64, 2009.
[18]  H. Guo, A. Saiga, M. Sato et al., “Royal jelly supplementation improves lipoprotein metabolism in humans,” Journal of Nutritional Science and Vitaminology, vol. 53, no. 4, pp. 345–348, 2007.
[19]  Q. W. T. Chan, A. P. Melathopoulos, S. F. Pernal, and L. J. Foster, “The innate immune and systemic response in honey bees to a bacterial pathogen, Paenibacillus larvae,” BMC Genomics, vol. 10, article no. 387, 2009.
[20]  H. Oka, Y. Emori, N. Kobayashi, Y. Hayashi, and K. Nomoto, “Suppression of allergic reactions by royal jelly in association with the restoration of macrophage function and the improvement of Th1/Th2 cell responses,” International Immunopharmacology, vol. 1, no. 3, pp. 521–532, 2001.
[21]  K. Kohno, I. Okamoto, O. Sano et al., “Royal jelly inhibits the production of proinflammatory cytokines by activated macrophages,” Bioscience, Biotechnology and Biochemistry, vol. 68, no. 1, pp. 138–145, 2004.
[22]  I. Okamoto, Y. Taniguchi, T. Kunikata et al., “Major royal jelly protein 3 modulates immune responses in vitro and in vivo,” Life Sciences, vol. 73, no. 16, pp. 2029–2045, 2003.
[23]  N. ?im?ek, A. Karadeniz, and A. G. Bayraktaro?lu, “Effects of L-carnitine, royal jelly and pomegranate seed on peripheral blood cells in rats,” Kafkas Universitesi Veteriner Fakultesi Dergisi, vol. 15, no. 1, pp. 63–69, 2009.
[24]  M. Kanbur, G. Eraslan, L. Beyaz et al., “The effects of royal jelly on liver damage induced by paracetamol in mice,” Experimental and Toxicologic Pathology, vol. 61, no. 2, pp. 123–132, 2009.
[25]  A. H. Wyllie, “Apoptosis: an overview,” British Medical Bulletin, vol. 53, no. 3, pp. 451–465, 1997.
[26]  G. S. Salvesen and V. M. Dixit, “Caspases: intracellular signaling by proteolysis,” Cell, vol. 91, no. 4, pp. 443–446, 1997.
[27]  Y. Zhan, B. van de Water, Y. Wang, and J. L. Stevens, “The roles of caspase-3 and bcl-2 in chemically-induced apoptosis but not necrosis of renal epithelial cells,” Oncogene, vol. 18, no. 47, pp. 6505–6512, 1999.
[28]  M. H. Kang and C. P. Reynolds, “BcI-2 Inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy,” Clinical Cancer Research, vol. 15, no. 4, pp. 1126–1132, 2009.
[29]  S. Gasic, D. Vucevic, S. Vasilijic, et al., “Evaluation of the immunomodulatory activities of royal jelly components in vitro,” Immunopharmacology and Immunotoxicology, vol. 29, no. 3-4, pp. 521–536, 2007.
[30]  H. M. M. Arafa, “Carnitine deficiency aggravates carboplatin nephropathy through deterioration of energy status, oxidant/anti-oxidant balance, and inflammatory endocoids,” Toxicology, vol. 254, no. 1-2, pp. 51–60, 2008.
[31]  K. Cayir, A. Karadeniz, A. Yildirim et al., “Protective effect of L-carnitine against cisplatin-induced liver and kidney oxidant injury in rats,” Central European Journal of Medicine, vol. 4, no. 2, pp. 184–191, 2009.
[32]  E. Khan, V. Batuman, and J. J. L. Lertora, “Emergence of biomarkers in nephropharmacology,” Biomarkers in Medicine, vol. 4, no. 6, pp. 805–814, 2010.
[33]  L. M. Greggi Antunes, J. D. A. C. Darin, and M. D. L. P. Bianchi, “Effects of the antioxidants curcumin or selenium on cisplatin-induced nephrotoxicity and lipid peroxidation in rats,” Pharmacological Research, vol. 43, no. 2, pp. 145–150, 2001.
[34]  H. Parlakpinar, E. Sahna, M. K. Ozer, et al., “Physiological and pharmacological concentrations of melatonin protect against cisplatin-induced acute renal injury,” Journal of Pineal Research, vol. 33, no. 3, pp. 161–166, 2002.
[35]  L. D. O. Mora, L. M. G. Antunes, H. D. C. Francescato, and M. D. L. P. Bianchi, “The effects of oral glutamine on cisplatin-induced nephrotoxicity in rats,” Pharmacological Research, vol. 47, no. 6, pp. 517–522, 2003.
[36]  R. Sallie, J. M. Tredger, and R. Williams, “Drugs and the liver,” Biopharmaceutics and Drug Disposition, vol. 12, no. 4, pp. 251–259, 1991.
[37]  G. R. Schinella, H. A. Tournier, J. M. Prieto, P. Mordujovich De Buschiazzo, and J. L. Ríos, “Antioxidant activity of anti-inflammatory plant extracts,” Life Sciences, vol. 70, no. 9, pp. 1023–1033, 2002.
[38]  R. S. Goldstein and G. H. Mayor, “Minireview the nephrotoxicity of cisplatin,” Life Sciences, vol. 32, no. 7, pp. 685–690, 1983.
[39]  C. S. Lieber, “Cytochrome P-4502E1: its physiological and pathological role,” Physiological Reviews, vol. 77, no. 2, pp. 517–544, 1997.
[40]  R. L. Safirstein, “Lessons learned from ischemic and cisplatin-induced nephrotoxicity in animals,” Renal Failure, vol. 21, no. 3-4, pp. 359–364, 1999.
[41]  S. Tamura, T. Kono, C. Harada, K. Yamaguchi, and T. Moriyama, “Estimation and characterisation of major royal jelly proteins obtained from the honeybee Apis merifera,” Food Chemistry, vol. 114, no. 4, pp. 1491–1497, 2009.
[42]  N. I. Weijl, G. D. Hopman, A. Wipkink-Bakker, et al., “Cisplatin combination chemotherapy induces a fall in plasma antioxidants of cancer patients,” Annals of Oncology, vol. 9, no. 12, pp. 1331–1337, 1998.
[43]  A. A. Al-Majed, M. M. Sayed-Ahmed, A. A. Al-Yahya, A. M. Aleisa, S. S. Al-Rejaie, and O. A. Al-Shabanah, “Propionyl-L-carnitine prevents the progression of cisplatin-induced cardiomyopathy in a carnitine-depleted rat model,” Pharmacological Research, vol. 53, no. 3, pp. 278–286, 2006.
[44]  A. M. Aleisa, A. A. Al-Majed, A. A. Al-Yahya et al., “Reversal of cisplatin-induced carnitine deficiency and energy starvation by propionyl-L-carnitine in rat kidney tissues,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 12, pp. 1252–1259, 2007.
[45]  K. ?avu?o?lu, K. Yapar, and E. Yal?in, “Royal jelly (honey bee) is a potential antioxidant against cadmium-induced genotoxicity and oxidative stress in albino mice,” Journal of Medicinal Food, vol. 12, no. 6, pp. 1286–1292, 2009.
[46]  C. C. Wetzel and S. J. Berberich, “p53 binds to cisplatin-damaged DNA,” Biochimica et Biophysica Acta, vol. 1517, no. 3, pp. 392–397, 2001.
[47]  B. S. Cummings and R. G. Schnellmann, “Cisplatin-induced renal cell apoptosis: caspase 3-dependent and -independent pathways,” Journal of Pharmacology and Experimental Therapeutics, vol. 302, no. 1, pp. 8–17, 2002.
[48]  J. Lieber, B. Kirchner, C. Eicher et al., “Inhibition of Bcl-2 and Bcl-X enhances chemotherapy sensitivity in hepatoblastoma cells,” Pediatric Blood and Cancer, vol. 55, no. 6, pp. 1089–1095, 2010.
[49]  R. Safirstein, P. Miller, and J. B. Guttenplan, “Uptake and metabolism of cisplatin by rat kidney,” Kidney International, vol. 25, no. 5, pp. 753–758, 1984.
[50]  G. Kroemer, “The proto-oncogene Bcl-2 and its role in regulating apoptosis,” Nature Medicine, vol. 3, no. 6, pp. 614–620, 1997.
[51]  A. Walker, S. T. Taylor, J. A. Hickman, and C. Dive, “Germinal center-derived signals act with Bcl-2 to decrease apoptosis and increase clonogenicity of drug-treated human B lymphoma cells,” Cancer Research, vol. 57, no. 10, pp. 1939–1945, 1997.
[52]  J. C. Reed, “Double identity for proteins of the Bcl-2 family,” Nature, vol. 387, no. 6635, pp. 773–776, 1997.
[53]  D. X. Yin and R. T. Schimke, “BCL-2 expression delays drug-induced apoptosis but does not increase clonogenic survival after drug treatment in HeLa cells,” Cancer Research, vol. 55, no. 21, pp. 4922–4928, 1995.
[54]  G. S. Salvesen and V. M. Dixit, “Caspases: intracellular signaling by proteolysis,” Cell, vol. 91, no. 4, pp. 443–446, 1997.
[55]  J. D. Blachley and J. B. Hill, “Renal and electrolyte disturbances associated with cisplatin,” Annals of Internal Medicine, vol. 95, no. 5, pp. 628–632, 1981.
[56]  A. H. Lau, “Apoptosis induced by cisplatin nephrotoxic injury,” Kidney International, vol. 56, no. 4, pp. 1295–1298, 1999.
[57]  M. Müller, S. Strand, H. Hug et al., “Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO- 1/Fas) receptor/ligand system and involves activation of wild-type p53,” Journal of Clinical Investigation, vol. 99, no. 3, pp. 403–413, 1997.
[58]  H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979.
[59]  F. Tietze, “Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues,” Analytical Biochemistry, vol. 27, no. 3, pp. 502–522, 1969.
[60]  M. E. Anderson, “Determination of glutathione and glutathione disulfide in biological samples,” Methods in Enzymology, vol. 113, pp. 548–555, 1985.
[61]  D. E. Paglia and W. N. Valentine, “Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase,” The Journal of Laboratory and Clinical Medicine, vol. 70, no. 1, pp. 158–169, 1967.
[62]  W. H. Habig, M. J. Pabst, and W. B. Jakoby, “Glutathione S transferases. The first enzymatic step in mercapturic acid formation,” Journal of Biological Chemistry, vol. 249, no. 22, pp. 7130–7139, 1974.
[63]  Y. Sun, L. W. Oberley, and Y. Li, “A simple method for clinical assay of superoxide dismutase,” Clinical Chemistry, vol. 34, no. 3, pp. 497–500, 1988.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133