%0 Journal Article %T Royal Jelly Modulates Oxidative Stress and Apoptosis in Liver and Kidneys of Rats Treated with Cisplatin %A Ali Karadeniz %A Nejdet Simsek %A Emre Karakus %A Serap Yildirim %A Adem Kara %A Ismail Can %A Fikrullah Kisa %A Habib Emre %A Mehmet Turkeli %J Oxidative Medicine and Cellular Longevity %D 2011 %I Hindawi Publishing Corporation %R 10.1155/2011/981793 %X Cisplatin (CDDP) is one of the most active cytotoxic agents in the treatment of cancer and has adverse side effects such as nephrotoxicity and hepatotoxicity. The present study was designed to determine the effects of royal jelly (RJ) against oxidative stress caused by CDDP injury of the kidneys and liver, by measuring tissue biochemical and antioxidant parameters and investigating apoptosis immunohistochemically. Twenty-four Sprague Dawley rats were divided into four groups, group C: control group received 0.9% saline; group CDDP: injected i.p. with cisplatin (CDDP, 7£¿mg£¿kg£¿1 body weight i.p., single dose); group RJ: treated for 15 consecutive days by gavage with RJ (300£¿mg/kg/day); group RJ + CDDP: treated by gavage with RJ 15 days following a single injection of CDDP. Malondialdehyde (MDA) and glutathione (GSH) levels, glutathione S-transferase (GST), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) activities were determined in liver and kidney homogenates, and the liver and kidney were also histologically examined. RJ elicited a significant protective effect towards liver and kidney by decreasing the level of lipid peroxidation (MDA), elevating the level of GSH, and increasing the activities of GST, GSH-Px, and SOD. In the immunohistochemical examinations were observed significantly enhanced apoptotic cell numbers and degenerative changes by cisplatin, but these histological changes were lower in the liver and kidney tissues of RJ + CDDP group. Besides, treatment with RJ lead to an increase in antiapoptotic activity hepatocytes and tubular epithelium. In conclusion, RJ may be used in combination with cisplatin in chemotherapy to improve cisplatin-induced oxidative stress parameters and apoptotic activity. 1. Introduction Cis-Diaminedichloroplatinum (II) (CDDP), commonly known as cisplatin, has been established as a potent chemotherapeutic agent administered to treat a variety of cancers such as ovarian, bladder, testicular, head and neck, and uterine cervix carcinomas [1, 2]. The major dose-limiting side effect of cisplatin is its nephrotoxicity and hepatotoxicity, and nephrotoxicity can result in severe nephropathy leading to acute renal failure. In several studies, it had been documented that injection of cisplatin produced a marked decrease in renal blood flow and glomerular filtration rate. The alterations in the kidney and liver functions induced by cisplatin are closely associated with an increase in lipid peroxidation and reactive oxygen species (ROS) in the tissues [3, 4]. In addition, cisplatin may have some mechanisms of %U http://www.hindawi.com/journals/omcl/2011/981793/