Background. Human herpesvirus-8 (HHV-8) is associated with some human diseases including Kaposi’s sarcoma and also some B-cell lymphoproliferative disorders. Few studies have highlighted the potential role of HHV-8 in the development of multiple myeloma (MM) which is known as a malignant proliferation of plasma cells derived from a single clone. Aims. The aim of this study was to find a relationship between HHV-8 and MM using polymerase chain reaction (PCR) method. Materials and Methods. This study was conducted on 30 formalin-fixed, paraffin-embedded (FFPE) bone marrow biopsies of multiple myeloma and 30 normal FFPE bone marrow biopsies. After the sample preparation, Deoxyribonucleic acid (DNA) was extracted by nonheating procedure. PCR for HHV-8 virus was carried out with commercial kit and the PCR products were visualized by gel electrophoresis. Finally, the statistical analysis was performed. Results. HHV-8 virus was not detected by PCR from FFPE blocks of multiple myeloma samples, while only one of the controls showed DNA band of the corrected molecular weights. Fisher’s exact test showed that no statistical differences were found between the two groups ( ). Conclusion. Our report adds to the body of evidence that there is no association between HHV- 8 and MM against a major role of HHV-8 infection in the pathogenesis of clonal plasma cell proliferation. 1. Introduction Human herpesvirus-8 (HHV-8), also called Kaposi’s sarcoma-associated herpesvirus (KSHV), is a member of the gamma herpesvirus family [1]. This virus was first identified in Kaposi’s sarcoma tissues obtained from patients with acquired immunodeficiency syndrome (AIDS) by Chang et al. in 1994 [2]. It has been implicated that HHV-8 may be associated with some human diseases including primary effusion lymphoma, a rare subtype of B-cell non-Hodgkin's lymphoma (NHL) [3], multicentric Castleman disease [4], angiosarcoma [5], angiolymphoid hyperplasia with eosinophilia [6], sarcoidosis [7], squamous cell carcinoma [8], pityriasis rosea [9], and multiple myeloma (MM) [10]. Multiple myeloma or plasma cell myeloma is a hematologic malignancy caused by neoplastic plasma cells which synthesize abnormal amounts of monoclonal immunoglobulins or immunoglobulin fragments [11]. This is primarily a disease of the middle-aged and the elderly with a median age at diagnosis of about 62 years [12] that affects slightly more men than women [13]. Plasma cell myeloma is the second most common blood malignancy in USA after NHL, causing about 1% of human malignancies and 13% of hematological neoplasms [12]. It
References
[1]
D. Ganem, “Kaposis sarcoma-associated herpes virus,” in Fields Virology, D. M. Knipe and P. M. Howley, Eds., vol. 3, pp. 2847–2888, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 5th edition, 2007.
[2]
Y. Chang, E. Cesarman, M. S. Pessin et al., “Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma,” Science, vol. 266, no. 5192, pp. 1865–1869, 1994.
[3]
T. Ikebe, Y. Amemiya, M. Saburi et al., “Rare primary effusion lymphoma associated with HHV-8 in Japan,” Internal Medicine, vol. 49, no. 13, pp. 1303–1306, 2010.
[4]
J. Stebbing, C. Adams, A. Sanitt et al., “Plasma HHV8 DNA predicts relapse in individuals with HIV-associated multicentric Castleman disease,” Blood, vol. 118, no. 2, pp. 271–275, 2011.
[5]
K. N. Naresh, N. Francis, N. Sarwar, and M. Bower, “Expression of human herpesvirus 8 (HHV-8), latent nuclear antigen 1 (LANA1) in angiosarcoma in acquired immunodeficiency syndrome (AIDS)—a report of two cases,” Histopathology, vol. 51, no. 6, pp. 861–864, 2007.
[6]
P. Bhattacharjee, P. Hui, and J. McNiff, “Human herpesvirus-8 is not associated with angiolymphoid hyperplasia with eosinophilia,” Journal of Cutaneous Pathology, vol. 31, no. 9, pp. 612–615, 2004.
[7]
L. Di Alberti, A. Piattelli, L. Artese et al., “Human herpesvirus 8 variants in sarcoid tissues,” The Lancet, vol. 350, no. 9092, pp. 1655–1661, 1997.
[8]
H. Qavi and A. A. Al-Rajhi, “Acetylcholinesterase and HHV-8 in squamous cell carcinoma and retinoblastoma,” In Vivo, vol. 23, no. 5, pp. 679–683, 2009.
[9]
A. Prantsidis, D. Rigopoulos, G. Papatheodorou et al., “Detection of human herpesvirus 8 in the skin of patients with pityriasis rosea,” Acta Dermato-Venereologica, vol. 89, no. 6, pp. 604–606, 2009.
[10]
S. I. Ismail, I. S. Mahmoud, M. A. L. Salman, M. A. Sughayer, and A. M. Mahafzah, “Frequent detection of Human Herpes Virus-8 in bone marrow of Jordanian patients of multiple myeloma,” Cancer Epidemiology, vol. 35, no. 5, pp. 471–474, 2011.
[11]
K. Kaushansky, M. A. Lichtman, T. J. Kipps, U. Seligsohn, and P. T. Prchal, Williams Hematology, McGraw-Hill, New York, NY, USA, 8th edition, 2010.
[12]
M. S. Raab, K. Podar, I. Breitkreutz, P. G. Richardson, and K. C. Anderson, “Multiple myeloma,” The Lancet, vol. 374, no. 9686, pp. 324–339, 2009.
[13]
S. H. Swerdlow, E. Campo, N. L. Harris, et al., Eds., WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, IARC, Lyon, France, 2008.
[14]
N. Becker, “Epidemiology of multiple myeloma,” Recent Results in Cancer Research, vol. 183, pp. 25–35, 2011.
[15]
B. J. Bain, D. M. Clark, and B. S. Wilkins, Bone Marrow Pathology, Wiley-Blackwell, 4th edition, 2010.
[16]
Z. Mozaheb, A. Aledavood, and F. Farzad, “Distributions of major sub-types of lymphoid malignancies among adults in Mashhad, Iran,” Cancer Epidemiology, vol. 35, no. 1, pp. 26–29, 2011.
[17]
T. T. Yee, K. Murphy, M. Johnson et al., “Multiple myeloma and human immunodeficiency virus-1 (HIV-1) infection,” American Journal of Hematology, vol. 66, no. 2, pp. 123–125, 2001.
[18]
A. E. Dokekias, M. Moutschen, M. F. Purhuence, F. Malanda, and A. Moyikoua, “Multiple's myeloma and HIV infection: report of 3 cases,” Revue Medicale de Liege, vol. 59, no. 2, pp. 95–97, 2004.
[19]
S. Franceschi, M. Lise, C. Trepo et al., “Infection with hepatitis B and C viruses and risk of lymphoid malignancies in the european prospective investigation into cancer and nutrition (EPIC),” Cancer Epidemiology Biomarkers and Prevention, vol. 20, no. 1, pp. 208–214, 2011.
[20]
M. B. Rettig, H. J. Ma, R. A. Vescio et al., “Kaposi's sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients,” Science, vol. 276, no. 5320, pp. 1851–1854, 1997.
[21]
M. Beksac, M. Ma, C. Akyerli et al., “Frequent demonstration of human herpesvirus 8 (HHV-8) in bone marrow biopsy samples from Turkish patients with multiple myeloma (MM),” Leukemia, vol. 15, no. 8, pp. 1268–1273, 2001.
[22]
P. Barozzi, L. Potenza, G. Riva et al., “B cells and Herpesviruses: a model of lymphoproliferation,” Autoimmunity Reviews, vol. 7, no. 2, pp. 132–136, 2007.
[23]
V. Kumar, A. K. Abbas, N. Fausto, and J. C. Aster, Robbins and Cotran Pathologic Basis of Diseaseed, Saunders Elsevier, Philadelphia, Pa, USA, 8th edition, 2010.
[24]
M. H. Sadeghian, M. Katebi, H. Ayatollahi, and M. R. Keramati, “Immunohistochemical study association between human herpesvirus 8 and multiple myeloma,” International Journal of Hematology, vol. 88, no. 3, pp. 283–286, 2008.
[25]
R. Duprez, V. Lacoste, S. Hermouet et al., “Plasma-cell leukemia and human herpesvirus 8 infection,” Leukemia, vol. 18, no. 11, pp. 1903–1904, 2004.
[26]
W. Chen, Q. Huang, C. W. Zuppan et al., “Complete absence of KSHV/HHV-8 in posttransplant lymphoproliferative disorders an immunohistochemical and molecular study of 52 cases,” American Journal of Clinical Pathology, vol. 131, no. 5, pp. 632–639, 2009.
[27]
S. R. Shi, R. J. Cote, L. Wu et al., “DNA extraction from archival formalin-fixed, paraffin-embedded tissue sections based on the antigen retrieval principle: heating under the influence of pH,” Journal of Histochemistry and Cytochemistry, vol. 50, no. 8, pp. 1005–1011, 2002.
[28]
C. Eaton, R. Dorer, and D. M. Aboulafia, “Human herpesvirus-8 infection associated with kaposi sarcoma, multicentric castleman's disease, and plasmablastic microlymphoma in a man with AIDS: a case report with review of pathophysiologic processes,” Pathology Research International, vol. 2011, Article ID 647518, 6 pages, 2011.
[29]
A. Carbone, E. Cesarman, M. Spina, A. Gloghini, and T. F. Schulz, “HIV-associated lymphomas and gamma-herpesviruses,” Blood, vol. 113, no. 6, pp. 1213–1224, 2009.
[30]
C. Y. Zhang, “The role of human herpesvirus-8 infection in the pathogenesis of multiple myeloma,” Zhongguo Shi Yan Xue Ye Xue Za Zhi, vol. 10, no. 1, pp. 81–84, 2002.
[31]
H. Fukumoto, T. Kanno, H. Hasegawa, and H. Katano, “Pathology of Kaposi's sarcoma-associated herpesvirus infection,” Frontiers in Microbiology, vol. 2, article 175, 2011.
[32]
N. Raje, J. Gong, D. Chauhan et al., “Bone marrow and peripheral blood dendritic cells from patients with multiple myeloma are phenotypically and functionally normal despite the detection of Kaposi's sarcoma herpesvirus gene sequences,” Blood, vol. 93, no. 5, pp. 1487–1495, 1999.
[33]
D. Chauhan, A. Bharti, N. Raje et al., “Detection of Kaposi's sarcoma herpesvirus DNA sequences in multiple myeloma bone marrow stromal cells,” Blood, vol. 93, no. 5, pp. 1482–1486, 1999.
[34]
Y. Dong, P. Zhu, and M. Ma, “Quantitative analysis of human herpes virus type 8 and expression of its genes in patients with multiple myeloma,” Zhonghua Yi Xue Za Zhi, vol. 81, no. 20, pp. 1230–1233, 2001.
[35]
S. J. Olsen, K. Tarte, W. Sherman et al., “Evidence against KSHV infection in the pathogenesis of multiple myeloma,” Virus Research, vol. 57, no. 2, pp. 197–202, 1998.
[36]
M. S. Cho and S. N. Lee, “Questionable role of human herpesvirus-8 in the pathogenesis of multiple myeloma,” The Korean Journal of Pathology, vol. 39, pp. 164–167, 2005.
[37]
R. Tedeschi, T. Luostarinen, P. De Paoli et al., “Joint Nordic prospective study on human herpesvirus 8 and multiple myeloma risk,” British Journal of Cancer, vol. 93, no. 7, pp. 834–837, 2005.
[38]
N. Regamey, V. Hess, J. Passweg et al., “Infection with human herpesvirus 8 and transplant-associated gammopathy,” Transplantation, vol. 77, no. 10, pp. 1551–1554, 2004.
[39]
S. Hermouet, C. A. Sutton, T. M. Rose et al., “Qualitative and quantitative analysis of human herpesviruses in chronic and acute B cell lymphocytic leukemia and in multiple myeloma,” Leukemia, vol. 17, no. 1, pp. 185–195, 2003.
[40]
J. J. Drabick, B. J. Davis, J. H. Lichy, J. Flynn, and J. C. Byrd, “Human herpesvirus 8 genome is not found in whole bone marrow core biopsy specimens of patients with plasma cell dyscrasias,” Annals of Hematology, vol. 81, no. 6, pp. 304–307, 2002.
[41]
L. Pan, L. Milligan, J. Michaeli, E. Cesarman, and D. M. Knowles, “Polymerase chain reaction detection of kaposi's sarcoma-associated herpesvirus-optimized protocols and their applicationto myeloma,” Journal of Molecular Diagnostics, vol. 3, no. 1, pp. 32–38, 2001.