全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Adsorption of Cu (II) on the Surface of Nonconventional Biomass: A Study on Forced Convective Mass Transfer in Packed Bed Column

DOI: 10.1155/2013/632163

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present investigation has dealt with the adsorption of Cu (II) across liquid phase on the nonconventional adsorbent. The nonconventional adsorbent used in the present work was Cedrus deodara sawdust obtained from local carpenter's shop. The maximum uptake capacities of Copper (II) ions at saturation and breakthrough point were 55.63?mg/g and 53.18?mg/g for an initial concentration of 93?mg/L of copper, respectively. The fitting of the experimental data in Langmuir, Freundlich, and Temkin isotherm models indicated the suitability of Langmuir isotherm in terms of very low statistical error functions that is, and sum of square errors (SSE) and higher values of linear regression coefficient. The goodness of fit of the breakthrough curve in Bohardt-Adams, Wolborska, Modified dose response, and Thomas model indicated the suitability of Thomas model with higher linear regression coefficient and lower values of statistical error functions. The flow rate and bed height affected the hydrodynamic parameters of the packed bed reactor significantly. 1. Introduction Contamination of water bodies due to heavy metals has posed serious threat to natural flora and fauna. Copper is one of the main constituents of heavy metal series. The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) 2011 has ranked Copper at 125th position with a total cumulative score of 805 points [1]. The excessive intake of copper results in bioaccumulation of Cu (II) in digestive organs of humans, kidney, mucosal irritation, and anemia [2, 3]. The World Health Organization (WHO) has demarcated the limit of copper (II) in drinking water as 2?mg/L [4]. The wastewater generated from most of the industries like metallurgical units, paints and pigments, alloy and manufacturing, acid mine drainage, and so forth contains huge amount of copper [5, 6]. The excessive concentration of copper affects the health of living beings adversely. In past, many conventional technologies like chemical hydroxide precipitation, coagulation and flocculation, cementation, osmosis, reverse osmosis, and so forth have been practiced to remove heavy metals from liquid phase [7, 8]. Most of these technologies have been found as very costly and do not work below a minimum concentration of?100 mg/L. Moreover, the usage of these technologies has led to the generation of secondary chemical sludge, thereby making its disposal undesirable. However, the removal of heavy metal ions by adsorption process has been studied in detail. Earlier, various sorts of nonconventional adsorbents like litchen,

References

[1]  Detailed data for 2011 priority list of hazardous substances ATSDR, division of toxicology and environmental medicine.
[2]  G. Blazquez, M. A. Martín-Lara, E. Dionisio-Ruiz, G. Tenorio, and M. Calero, “Evaluation and comparison of the biosorption process of copper ions onto olive stone and pine bark,” Journal of Industrial and Engineering Chemistry, vol. 17, no. 5-6, pp. 824–833, 2011.
[3]  G. Bayramoglu, A. G. Yakup, and N. Adiguzel, “Removal of Ni (II) and Cu (II) ions using native and acid treated Ni-hyperaccumulator plant Alyssum discolor from Turkish serpentine soil,” Chemosphere, vol. 89, no. 3, pp. 302–309, 2012.
[4]  T. ?ahana, H. Ceylan, N. ?ahiner, and N. Akta?a, “Optimization of removal conditions of copper ions from aqueous solutions by Trametes versicolor,” Bioresource Technology, vol. 101, no. 12, pp. 4520–4526, 2010.
[5]  M. A. Hashim, S. Mukhopadhyay, J. N. Sahu, and B. Sengupta, “Remediation technologies for heavy metal contaminated groundwater,” Journal of Environmental Management, vol. 92, no. 10, pp. 2355–2388, 2011.
[6]  G. M. Gadd, “Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment,” Journal of Chemical Technology and Biotechnology, vol. 84, no. 1, pp. 13–28, 2009.
[7]  A. Sari and M. Tuzen, “Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies,” Journal of Hazardous Materials, vol. 160, no. 2-3, pp. 349–355, 2008.
[8]  A. Sari, D. Mendil, M. Tuzen, and M. Soylak, “Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies,” Chemical Engineering Journal, vol. 144, no. 1, pp. 1–9, 2008.
[9]  O. D. Uluozlu, A. Sari, M. Tuzen, and M. Soylak, “Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass,” Bioresource Technology, vol. 99, no. 8, pp. 2972–2980, 2008.
[10]  V. Mishra, C. Balomajumder, and V. K. Agarwal, “Sorption of Zn (II) ion onto the surface of activated carbon derived from eucalyptus bark saw dust from industrial wastewater: isotherm, kinetics, mechanistic modeling, and thermodynamics,” Desalination and Water Treatment, vol. 46, no. 1–3, pp. 332–352, 2012.
[11]  V. Mishra, C. Balomajumder, and V. K. Agarwal, “Zn(II) ion biosorption onto surface of eucalyptus leaf biomass: isotherm, Kinetic, and mechanistic modeling,” Clean—Soil, Air, Water, vol. 38, no. 11, pp. 1062–1073, 2010.
[12]  C. A. Basha, S. J. Selvi, E. Ramasamy, and S. Chellammal, “Removal of arsenic and sulphate from the copper smelting industrial effluent,” Chemical Engineering Journal, vol. 141, no. 1–3, pp. 89–98, 2008.
[13]  V. Mishra, C. Balomajumder, and V. K. Agarwal, “Simultaneous adsorption and bioaccumulation: a study on continuous mass transfer in column reactor,” Environmental Progress and Sustainable Energy, 2012.
[14]  V. Mishra, C. Balomajumder, and V. K. Agarwal, “Kinetics, mechanistic and thermodynamics of Zn (II) Ion sorption: a modeling approach,” Clean Soil Air and Water, vol. 40, no. 7, pp. 718–727, 2012.
[15]  R. A. Anayurt, A. Sari, and M. Tuzen, “Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass,” Chemical Engineering Journal, vol. 151, no. 1–3, pp. 255–261, 2009.
[16]  A. Sari and M. Tuzen, “Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass,” Journal of Hazardous Materials, vol. 164, no. 2-3, pp. 1004–1011, 2009.
[17]  A. Singh, D. Kumar, and J. P. Gaur, “Continuous metal removal from solution and industrial effluents using Spirogyra biomass-packed column reactor,” Water Research, vol. 46, no. 3, pp. 779–7788, 2012.
[18]  H. Kasaini and R. K. Mbaya, “Continuous adsorption of Pt ions in a batch reactor and packed-bed column,” Hydrometallurgy, vol. 97, no. 1-2, pp. 111–118, 2009.
[19]  I. C. Ostroski, M. A. S. D. Barros, E. A. Silva, J. H. Dantas, P. A. Arroyo, and O. C. M. Lima, “A comparative study for the ion exchange of Fe(III) and Zn(II) on zeolite NaY,” Journal of Hazardous Materials, vol. 161, no. 2-3, pp. 1404–1412, 2009.
[20]  R. Apiratikul, V. Madacha, and P. Pavasant, “Kinetic and mass transfer analyses of metal biosorption by Caulerpa lentillifera,” Desalination, vol. 278, no. 1–3, pp. 303–311, 2011.
[21]  G. Blázquez, M. A. Martín-Lara, E. Dionisio-Ruiz, G. Tenorio, and M. Calero, “Evaluation and comparison of the biosorption process of copper ions onto olive stone and pine bark,” Journal of Industrial and Engineering Chemistry, vol. 17, no. 5-6, pp. 824–833, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133