%0 Journal Article %T Adsorption of Cu (II) on the Surface of Nonconventional Biomass: A Study on Forced Convective Mass Transfer in Packed Bed Column %A Vishal Mishra %A Chandrajit Balomajumder %A Vijay Kumar Agarwal %J Journal of Waste Management %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/632163 %X The present investigation has dealt with the adsorption of Cu (II) across liquid phase on the nonconventional adsorbent. The nonconventional adsorbent used in the present work was Cedrus deodara sawdust obtained from local carpenter's shop. The maximum uptake capacities of Copper (II) ions at saturation and breakthrough point were 55.63£¿mg/g and 53.18£¿mg/g for an initial concentration of 93£¿mg/L of copper, respectively. The fitting of the experimental data in Langmuir, Freundlich, and Temkin isotherm models indicated the suitability of Langmuir isotherm in terms of very low statistical error functions that is, and sum of square errors (SSE) and higher values of linear regression coefficient. The goodness of fit of the breakthrough curve in Bohardt-Adams, Wolborska, Modified dose response, and Thomas model indicated the suitability of Thomas model with higher linear regression coefficient and lower values of statistical error functions. The flow rate and bed height affected the hydrodynamic parameters of the packed bed reactor significantly. 1. Introduction Contamination of water bodies due to heavy metals has posed serious threat to natural flora and fauna. Copper is one of the main constituents of heavy metal series. The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) 2011 has ranked Copper at 125th position with a total cumulative score of 805 points [1]. The excessive intake of copper results in bioaccumulation of Cu (II) in digestive organs of humans, kidney, mucosal irritation, and anemia [2, 3]. The World Health Organization (WHO) has demarcated the limit of copper (II) in drinking water as 2£¿mg/L [4]. The wastewater generated from most of the industries like metallurgical units, paints and pigments, alloy and manufacturing, acid mine drainage, and so forth contains huge amount of copper [5, 6]. The excessive concentration of copper affects the health of living beings adversely. In past, many conventional technologies like chemical hydroxide precipitation, coagulation and flocculation, cementation, osmosis, reverse osmosis, and so forth have been practiced to remove heavy metals from liquid phase [7, 8]. Most of these technologies have been found as very costly and do not work below a minimum concentration of£¿100 mg/L. Moreover, the usage of these technologies has led to the generation of secondary chemical sludge, thereby making its disposal undesirable. However, the removal of heavy metal ions by adsorption process has been studied in detail. Earlier, various sorts of nonconventional adsorbents like litchen, %U http://www.hindawi.com/journals/jwm/2013/632163/