Batch Sorption Experiments: Langmuir and Freundlich Isotherm Studies for the Adsorption of Textile Metal Ions onto Teff Straw (Eragrostis tef) Agricultural Waste
Adsorption of heavy metals (Cr, Cd, Pb, Ni, and Cu) onto Activated Teff Straw (ATS) has been studied using batch-adsorption techniques. This study was carried out to examine the adsorption capacity of the low-cost adsorbent ATS for the removal of heavy metals from textile effluents. The influence of contact time, pH, Temperature, and adsorbent dose on the adsorption process was also studied. Results revealed that adsorption rate initially increased rapidly, and the optimal removal efficiency was reached within about 1 hour. Further increase in contact time did not show significant change in equilibrium concentration; that is, the adsorption phase reached equilibrium. The adsorption isotherms could be fitted well by the Langmuir model. The value in the present investigation was less than one, indicating that the adsorption of the metal ion onto ATS is favorable. After treatment with ATS the levels of heavy metals were observed to decrease by 88% (Ni), 82.9% (Cd), 81.5% (Cu), 74.5% (Cr), and 68.9% (Pb). Results indicate that the freely abundant, locally available, low-cost adsorbent, Teff straw can be treated as economically viable for the removal of metal ions from textile effluents. 1. Introduction Demands of clothing and apparel increase with the improving sense of fashion and lifestyle; thus textiles are manufactured to meet the growing demands. In developing countries such as Ethiopia, textile production becomes their source of income that contributes to their gross domestic product (GDP). However, this has brought both consequences to such countries either in a positive way which is an improvement of economy or in a negative way which led to an increased anthropogenic impact on the biosphere. Heavy metals, particularly, Pb, Cr, Cd, and Cu are widely used for the production of color pigments of textile dyes. These heavy metals which have transferred to the environment are highly toxic and can bioaccumulate in the human body aquatic life and natural water bodies and also possibly get trapped in the soil [1]. These toxic heavy metals entering in the aquatic environment are adsorbed onto particulate matter, although they can form free metal ions and soluble complexes that are available for uptake by biological organisms [2]. Various methods of treating effluents containing heavy metals have been developed over years, such as chemical precipitation, chemical oxidation or reduction, electrochemical treatment, ion exchange, reverse osmosis, filtration, evaporation recovery, and electrocoagulation [3–11]. These methods have significant disadvantages,
References
[1]
N. Mathur, P. Bhatnagar, and P. Bakre, “Assessing mutagenicity of textile dyes from pali (Rajasthan) using ames bioassay,” Applied Ecology and Environmental Research, vol. 4, no. 1, pp. 111–118, 2006.
[2]
P. U. Singare, R. S. Lokhande, and K. U. Naik, “A case study of some lakes located at and around thane city of Maharashtra, India, with special reference to physico-chemical properties and heavy metal content of lake water,” Interdisciplinary Environmental Review, vol. 11, no. 1, pp. 90–107, 2010.
[3]
J. O. Esalah, M. E. Weber, and J. H. Vera, “Removal of lead, cadmium and zinc from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate,” Canadian Journal of Chemical Engineering, vol. 78, no. 5, pp. 948–954, 2000.
[4]
A. I. Zouboulis, K. A. Matis, B. G. Lanara, and C. L. Neskovic, “Removal of cadmium from dilute solutions by hydroxy apatite. II. floatation studies,” Separation Science and Technology, vol. 32, no. 10, pp. 1755–1767, 1997.
[5]
A. I. Zouboulis, K. A. Matis, B. G. Lanara, and C. L. Neskovic, “Removal of cadmium from dilute solutions by hydroxy apatite. II: floatation studies,” in The Protocols, K. R. Fall and W. R. Stevens, Eds., vol. 1 of TCP/IP Illustrated, Addison-Wesley, Reading, Mass, USA, 2nd edition, 2011.
[6]
L. Canet, M. Ilpide, and P. Seta, “Efficient facilitated transport of lead, cadmium, zinc, and silver across a flat-sheet-supported liquid membrane mediated by lasalocid A,” Separation Science and Technology, vol. 37, no. 8, pp. 1851–1860, 2002.
[7]
K. Dermentiz, A. Christoforidis, E. Valsamidou, A. Loucas, and K. Greece, “Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation,” International Journal of Environmental Sciences, vol. 1, no. 5, pp. 697–710, 2011.
[8]
V. J. Inglezakis, M. D. Loizidou, and H. P. Grigoropoulou, “Ion exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake,” Journal of Colloid and Interface Science, vol. 261, no. 1, pp. 49–54, 2003.
[9]
P. T. Bolger and D. C. Szlag, “Electrochemical treatment and reuse of nickel plating rinse waters,” Environmental Progress, vol. 21, no. 3, pp. 203–208, 2002.
[10]
K. Dermentzis, “Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization,” Journal of Hazardous Materials, vol. 173, no. 1–3, pp. 647–652, 2010.
[11]
M. A. Amer, F. I. Khaili, and A. M. Awwad, “Adsorption of lead, zinc and cadmium ions on polyphosphate-modified kaolinite clay,” Journal of Environmental Chemistry and Ecotoxicology, vol. 2, no. 1, pp. 1–8, 2010.
[12]
N. O. Reuben and J. A. Miebaka, “Chromium (VI) adsorption rate in the treatment of liquid phase oil based drill cuttings,” African Journal of Environmental Science and Technology, vol. 2, no. 4, pp. 68–674, 2008.
[13]
R. Ahmed, T. Yamin, M. S. Ansari, and S. M. Hasany, “Sorption behaviour of lead(II) ions from aqueous solution onto Haro river sand,” Adsorption Science and Technology, vol. 24, no. 6, pp. 475–486, 2006.
[14]
D. F. Aloko and E. A. Afolabi, “Titanium dioxide as a cathode material in a dry cell,” Leonardo Electronics Journal of Practices and Technologies, vol. 11, pp. 97–108, 2007.
[15]
D. F. Aloko and E. A. Afolabi, “Model development of the adsorption of cations on manganese dioxide (MnO2) used in a Leclanche dry cell,” Leonardo Journal of Sciences, vol. 8, pp. 13–20, 2006.
[16]
C. C. Chen and Y. C. Chung, “Arsenic removal using a biopolymer chitosan sorbent,” Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, vol. 41, no. 4, pp. 645–658, 2006.
[17]
N. Amin, S. Kaneco, T. Kitagawa et al., “Removal of arsenic in aqueous solutions by adsorption onto waste rice husk,” Industrial and Engineering Chemistry Research, vol. 45, no. 24, pp. 8105–8110, 2006.
[18]
A. M. M. Khaled, A Comparative study for distribution of some heavy metals in aquatic organisms fished from Alexandria region [Ph.D. thesis], Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt, 1998.
[19]
K. Steve, T. Erika, T. Reynold, and M. Paul, “Activated carbon: a unit operations and processes of activated carbon,” in Environmental Engineering, vol. 25, pp. 350–749, PWS Publishing, 2nd edition, 1998.
[20]
C. Ng, J. N. Losso, W. E. Marshall, and R. M. Rao, “Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system,” Bioresource Technology, vol. 85, no. 2, pp. 131–135, 2002.
[21]
B. M. G. Jones, J. Ponti, A. Tavassoli, and P. A. Dixon, “Relationships of the ethiopian cereal t'ef (Eragrostis tef (Zucc.) Trotter): evidence from morphology and chromosome number,” Annals of Botany, vol. 42, no. 6, pp. 1369–1373, 1978.
[22]
S. H. Costanza, J. M. J. Dewet, and J. R. Harlan, “Literature review and numerical taxonomy of Eragrostis tef (T'ef),” Economic Botany, vol. 33, no. 4, pp. 413–424, 1979.
[23]
E. Bekele and R. N. Lester, “Biochemical assessment of the relationships of Eragrostis tef (Zucc.) trotter with some wild Eragrostis species (Gramineae),” Annals of Botany, vol. 48, no. 5, pp. 717–725, 1981.
[24]
S. S. Baral, S. N. Das, and P. Rath, “Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust,” Biochemical Engineering Journal, vol. 31, no. 3, pp. 216–222, 2006.
[25]
B. H. Hameed, A. T. M. Din, and A. L. Ahmad, “Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies,” Journal of Hazardous Materials, vol. 141, no. 3, pp. 819–825, 2007.
[26]
B. E. Reed and M. R. Matsumoto, “Modeling cadmium adsorption by activated carbon using the Langmuir and Freundlich isotherm expressions,” Separation Science and Technology, vol. 28, no. 13-14, pp. 2179–2195, 1993.
[27]
G. McKay, M. S. Otterburn, and A. G. Sweeney, “The removal of colour from effluent using various adsorbents. III. Silica: rate processes,” Water Research, vol. 14, no. 1, pp. 15–20, 1980.
[28]
A. ?zer and H. B. Pirin??i, “The adsorption of Cd(II) ions on sulphuric acid-treated wheat bran,” Journal of Hazardous Materials, vol. 137, no. 2, pp. 849–855, 2006.
[29]
A. Mittal, L. Kurup, and J. Mittal, “Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers,” Journal of Hazardous Materials, vol. 146, no. 1-2, pp. 243–248, 2007.
[30]
M. Malakootian, J. Nouri, and H. Hossaini, “Removal of heavy metals from paint industry's wastewater using Leca as an available adsorbent,” International Journal of Environmental Science and Technology, vol. 6, no. 2, pp. 183–190, 2009.
[31]
H. Liu, Y. Dong, H. Wang, and Y. Liu, “Adsorption behavior of ammonium by a bioadsorbent—Boston ivy leaf powder,” Journal of Environmental Sciences, vol. 22, no. 10, pp. 1513–1518, 2010.
[32]
K. R. Hall, L. C. Eagleton, A. Acrivos, and T. Vermeulen, “Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions,” Industrial and Engineering Chemistry Fundamentals, vol. 5, no. 2, pp. 212–223, 1966.
[33]
P. K. Malik, “Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics,” Journal of Hazardous Materials, vol. 113, no. 1–3, pp. 81–88, 2004.
[34]
G. McKay, H. S. Blair, and J. R. Gardner, “Adsorption of dyes on chitin,” Journal of Applied Polymer Science, vol. 27, no. 8, pp. 3043–3057, 1982.