%0 Journal Article %T Batch Sorption Experiments: Langmuir and Freundlich Isotherm Studies for the Adsorption of Textile Metal Ions onto Teff Straw (Eragrostis tef) Agricultural Waste %A Mulu Berhe Desta %J Journal of Thermodynamics %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/375830 %X Adsorption of heavy metals (Cr, Cd, Pb, Ni, and Cu) onto Activated Teff Straw (ATS) has been studied using batch-adsorption techniques. This study was carried out to examine the adsorption capacity of the low-cost adsorbent ATS for the removal of heavy metals from textile effluents. The influence of contact time, pH, Temperature, and adsorbent dose on the adsorption process was also studied. Results revealed that adsorption rate initially increased rapidly, and the optimal removal efficiency was reached within about 1 hour. Further increase in contact time did not show significant change in equilibrium concentration; that is, the adsorption phase reached equilibrium. The adsorption isotherms could be fitted well by the Langmuir model. The value in the present investigation was less than one, indicating that the adsorption of the metal ion onto ATS is favorable. After treatment with ATS the levels of heavy metals were observed to decrease by 88% (Ni), 82.9% (Cd), 81.5% (Cu), 74.5% (Cr), and 68.9% (Pb). Results indicate that the freely abundant, locally available, low-cost adsorbent, Teff straw can be treated as economically viable for the removal of metal ions from textile effluents. 1. Introduction Demands of clothing and apparel increase with the improving sense of fashion and lifestyle; thus textiles are manufactured to meet the growing demands. In developing countries such as Ethiopia, textile production becomes their source of income that contributes to their gross domestic product (GDP). However, this has brought both consequences to such countries either in a positive way which is an improvement of economy or in a negative way which led to an increased anthropogenic impact on the biosphere. Heavy metals, particularly, Pb, Cr, Cd, and Cu are widely used for the production of color pigments of textile dyes. These heavy metals which have transferred to the environment are highly toxic and can bioaccumulate in the human body aquatic life and natural water bodies and also possibly get trapped in the soil [1]. These toxic heavy metals entering in the aquatic environment are adsorbed onto particulate matter, although they can form free metal ions and soluble complexes that are available for uptake by biological organisms [2]. Various methods of treating effluents containing heavy metals have been developed over years, such as chemical precipitation, chemical oxidation or reduction, electrochemical treatment, ion exchange, reverse osmosis, filtration, evaporation recovery, and electrocoagulation [3¨C11]. These methods have significant disadvantages, %U http://www.hindawi.com/journals/jther/2013/375830/