Although a lot of antibacterial finishes are available for cotton, the user safety and durability of the finish are always the important issues. Some of the natural dyes are known to possess antibacterial properties; however, most of them are nonsubstantive. Hence, they are used in conjunction with eco-friendly natural mordants. Although metallic mordants are effective, they are environmentally pollutants, hence not desirable. In the current work, the novel natural mordant like chitosan with different concentrations (10% and 20% of weight of fiber) was applied on cotton and fabric was printed with natural dyes such as catechu, turmeric, and marigold using screen printing method. All the three dyes were used in powder form in print paste with different concentrations (1%, 5%, and 10%) and guar gum was used as thickener. The printed samples using chitosan as a mordant showed the equivalent color values to that of prints obtained using alum as a mordant. The printed fabric showed excellent antibacterial activity against both gram-positive and gram-negative bacteria. The method may be considered suitable for eco-friendly printing and antibacterial finishing of textile materials. 1. Introduction Textiles, especially those made of natural fibers, are an excellent medium for the growth of microorganisms when the basic requirements for their growth such as nutrients, moisture, oxygen, and appropriate temperature are present. The large surface area and ability to retain moisture of textiles also assist the growth of microorganisms on the fabric [1]. The growth of microorganisms on textiles inflicts a range of unwanted effects not only on the textile itself but also on the wearer. These effects include the generation of unpleasant odor, stains, discoloration in the fabric, a reduction in the tensile strength of the fabric, and an increased likelihood of contamination [2]. In the last few decades, with the increase in new antimicrobial fiber technologies and the growing awareness about cleaner surroundings and healthy lifestyle, a range of textile products based on synthetic antimicrobial agents, such as triclosan, metal and their salts, organometallics, phenols, and quaternary ammonium compounds, have been developed and quite a few are also available commercially [3]. Even though the excellent antimicrobials are available, their user ecology is always a question. Some of the natural dyes are reported to possess antimicrobial properties. Synthetic dyes are here to remain as one can tailor make them depending upon the required hue, substantivity, and fiber. The
References
[1]
W. Su, S. S. Wei, S. Q. Hu, and J. X. Tang, “Antimicrobial finishing of cotton textile with nanosized silver colloids synthesized using polyethylene glycol,” Journal of the Textile Institute, vol. 102, no. 2, pp. 150–156, 2011.
[2]
Y. Gao and R. Cranston, “Recent advances in antimicrobial treatments of textiles,” Textile Research Journal, vol. 78, no. 1, pp. 60–72, 2008.
[3]
M. Joshi, S. W. Ali, R. Purwar, and S. Rajendran, “Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products,” Indian Journal of Fibre and Textile Research, vol. 34, no. 3, pp. 295–304, 2009.
[4]
T. Bechtold, A. Turcanu, E. Ganglberger, and S. Geissler, “Natural dyes in modern textile dyehouses—how to combine experiences of two centuries to meet the demands of the future?” Journal of Cleaner Production, vol. 11, no. 5, pp. 499–509, 2003.
[5]
J. K. Kumary and A. K. Sinha, “Resurgence of natural colourants: a holistic view,” Natural Product Letters, vol. 18, no. 1, pp. 59–84, 2004.
[6]
K. H. Prabhu, M. D. Teli, and N. G. Waghmare, “Eco-friendly dyeing using natural mordant extracted from Emblica officinalis G. Fruit on cotton and silk fabrics with antibacterial activity,” Fibers and Polymers, vol. 12, no. 6, pp. 753–759, 2011.
[7]
V. A. Shenai, Technology of Printing, Sevak Publications, Mumbai, India, 1985.
[8]
J. A. Rippon, “Improving the dye coverage of immature cotton fibres by treatment with chitosan,” Journal of the Society of Dyers and Colourists, vol. 100, no. 10, pp. 298–303, 1984.
[9]
S.-H. Lim and S. M. Hudson, “Application of a fibre-reactive chitosan derivative to cotton fabric as a zero-salt dyeing auxiliary,” Coloration Technology, vol. 120, no. 3, pp. 108–113, 2004.
[10]
S.-H. Lim and S. M. Hudson, “Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish,” Carbohydrate Polymers, vol. 56, no. 2, pp. 227–234, 2004.
[11]
S. K. Tiwari and M. M. Gharia, “Characterization of chitosan pastes and their application in textile printing,” AATCC Review, vol. 3, p. 25, 2003.
[12]
Z. Zhang, L. Chen, J. Ji, Y. Huang, and D. Chen, “Antibacterial properties of cotton fabrics treated with Chitosan,” Textile Research Journal, vol. 73, no. 12, pp. 1103–1106, 2003.
[13]
S. Sharaf, K. Opwis, D. Knittel, and J. S. Gutmann, “Comparative investigations on the efficiency of different anchoring chemicals for the permanent finishing of cotton with chitosan,” Autex Research Journal, vol. 11, no. 2, pp. 71–77, 2011.
[14]
K. El-Tahlawy, “Chitosan phosphate: a new way for production of eco-friendly flame-retardant cotton textiles,” Journal of the Textile Institute, vol. 99, no. 3, pp. 185–191, 2008.
[15]
K. F. El-Tahlawy, M. A. El-Bendary, A. G. Elhendawy, and S. M. Hudson, “The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan,” Carbohydrate Polymers, vol. 60, no. 4, pp. 421–430, 2005.
[16]
T. Oktem, “Surface treatment of cotton fabrics with chitosan,” Coloration Technology, vol. 119, no. 4, pp. 241–246, 2003.
[17]
A. Abou-Okeil, A. El-Shafie, and A. Hebeish, “Chitosan phosphate induced better thermal characteristics to cotton fabric,” Journal of Applied Polymer Science, vol. 103, no. 3, pp. 2021–2026, 2007.
[18]
B. N. Bandyopadhyay, G. N. Sheth, and M. M. Moni, “Chitosan can cut salt use in reactive dyeing,” International Dyer, vol. 183, no. 11, pp. 39–42, 1998.
[19]
R. S. Davidson and Y. Xue, “Improving the dyeability of wool by treatment with chitosan,” Journal of the Society of Dyers and Colourists, vol. 110, no. 1, pp. 24–29, 1994.
[20]
S. Rattanaphani, M. Chairat, J. B. Bremner, and V. Rattanaphani, “An adsorption and thermodynamic study of lac dyeing on cotton pretreated with chitosan,” Dyes and Pigments, vol. 72, no. 1, pp. 88–96, 2007.
[21]
M. Jassal, R. B. Chavan, R. Yadav, and P. Singh, “Chitosan as thickner for printing of cotton with pigment colors,” in Chitin and Chitosan: Opportunities & Challenges, P. K. Dutta, Ed., vol. 94, SSM International Publication, Contai, India, 2005.
[22]
S. A. Bahmani, G. C. East, and I. Holme, “The application of chitosan in pigment printing,” Journal of the Society of Dyers and Colourists, vol. 116, no. 3, pp. 94–99, 2000.
[23]
M. D. Teli and J. Sheikh, “Simultaneous pigment dyeing and antibacterial finishing of denim fabric using Chitosan as a binder,” International Dyer, vol. 197, no. 4, p. 28, 2012.
[24]
M. D. Teli and J. Sheikh, “Extraction of chitosan from shrimp shells waste and application in antibacterial finishing of bamboo rayon,” International Journal of Biological Macromolecules, vol. 50, no. 5, pp. 1195–1200, 2012.
[25]
E. R. Trotmann, Dyeing and Chemical Technology of Textile Fibers, Charles Griffin and Company, London, UK, 1984.
[26]
ISO technical manual, Geneva, Switzerland, 2006.
[27]
“American Association of Textile Chemists and Colorists,” AATCC Technical Manual 76, AATCC, Research Triangle Park, NC, USA, 2007.
[28]
S.-H. Lim and S. M. Hudson, “Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals,” Journal of Macromolecular Science, vol. 43, no. 2, pp. 223–269, 2003.