%0 Journal Article %T Exploratory Investigation of Chitosan as Mordant for Eco-Friendly Antibacterial Printing of Cotton with Natural Dyes %A M. D. Teli %A Javed Sheikh %A Pragati Shastrakar %J Journal of Textiles %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/320510 %X Although a lot of antibacterial finishes are available for cotton, the user safety and durability of the finish are always the important issues. Some of the natural dyes are known to possess antibacterial properties; however, most of them are nonsubstantive. Hence, they are used in conjunction with eco-friendly natural mordants. Although metallic mordants are effective, they are environmentally pollutants, hence not desirable. In the current work, the novel natural mordant like chitosan with different concentrations (10% and 20% of weight of fiber) was applied on cotton and fabric was printed with natural dyes such as catechu, turmeric, and marigold using screen printing method. All the three dyes were used in powder form in print paste with different concentrations (1%, 5%, and 10%) and guar gum was used as thickener. The printed samples using chitosan as a mordant showed the equivalent color values to that of prints obtained using alum as a mordant. The printed fabric showed excellent antibacterial activity against both gram-positive and gram-negative bacteria. The method may be considered suitable for eco-friendly printing and antibacterial finishing of textile materials. 1. Introduction Textiles, especially those made of natural fibers, are an excellent medium for the growth of microorganisms when the basic requirements for their growth such as nutrients, moisture, oxygen, and appropriate temperature are present. The large surface area and ability to retain moisture of textiles also assist the growth of microorganisms on the fabric [1]. The growth of microorganisms on textiles inflicts a range of unwanted effects not only on the textile itself but also on the wearer. These effects include the generation of unpleasant odor, stains, discoloration in the fabric, a reduction in the tensile strength of the fabric, and an increased likelihood of contamination [2]. In the last few decades, with the increase in new antimicrobial fiber technologies and the growing awareness about cleaner surroundings and healthy lifestyle, a range of textile products based on synthetic antimicrobial agents, such as triclosan, metal and their salts, organometallics, phenols, and quaternary ammonium compounds, have been developed and quite a few are also available commercially [3]. Even though the excellent antimicrobials are available, their user ecology is always a question. Some of the natural dyes are reported to possess antimicrobial properties. Synthetic dyes are here to remain as one can tailor make them depending upon the required hue, substantivity, and fiber. The %U http://www.hindawi.com/journals/jtex/2013/320510/