The deformation characteristics during open-die forging of silicon carbide particulate reinforced aluminium metal matrix composites (SiCp AMC) at cold conditions are investigated. The material was fabricated by liquid stir casting method in which preheated SiC particles were mixed with molten LM6 aluminium casting alloy and casted in the silicon mould. Finally, preforms obtained were machined in required dimensions. Two separate cases of deformation, that is, open-die forging of solid disc and solid rectangular preforms, were considered. Both upper bound theoretical analysis and experimental investigations were performed followed by finite element simulation using DEFORM, considering composite interfacial friction law, barreling of preform vertical sides, and inertia effects, that is, effect of die velocity on various deformation characteristics like effective stress, strain, strain rate, forging load, energy dissipations, and height reduction. Results have been presented graphically and critically investigated to evaluate the concurrence among theoretical, experimental, and finite element based computational findings. 1. Introduction Metal matrix composite (MMC) as hybrid materials has attracted attention of many researchers in recent years. MMCs provide significantly enhanced properties over conventional monolithic materials, for example, higher strength, stiffness, hardness, elastic modulus, and wear resistance and thus may be subjected to various forming operations like rolling, extrusion, forging, and so forth to manufacture numerous engineering components Sulaiman et al. and Murashkevich et al. [1, 2]. Automobile pistons, valves, cylinder liners, piston rings, connecting rods, crankshaft, gear parts, suspension arms, turbocharger impellers, guide vanes in gas turbines, ventral fins and fuel-access cover doors in military aircrafts, rotor blade sleeves in helicopters, flight-control hydraulic manifolds, brake discs of transport vehicles, bicycle frames, and so forth are the most common engineering applications seen as cited by Kainer et al. and Matejka et al. [3, 4]. Various composite products tailored-made to the demands of different industrial applications by suitable combinations of matrix materials, reinforcements, and processing routes were also reported by Surappa [5]. The present paper is an attempt to investigate the various deformation characteristics during open-die forging of SiCp reinforced aluminium metal matrix composites (AMC). The objective was to synthesize a metal matrix composite material and further process it mechanically to
References
[1]
S. Sulaiman, M. Sayuti, and R. Samin, “Mechanical properties of the as-cast quartz particulate reinforced LM6 alloy matrix composites,” Journal of Materials Processing Technology, vol. 201, Proceedings of the 10th International Conference on Advances in Materials and Processing Technologies (AMPT '07), no. 1-3, pp. 731–735, 2008.
[2]
A. N. Murashkevich, A. S. Lavitskaya, O. A. Alisienok, and I. M. Zharskii, “Fabrication and properties of SiO2/TiO2 composites,” Inorganic Materials, vol. 45, no. 10, pp. 1146–1152, 2009.
[3]
K. U. Kainer, Basics of Metal Matrix Composites, Metal Matrix Composites: Custom-Made Materials for Automotive and Aerospace Engineering, Wiley-VCH Gmbh and Co. KGaA, Weinheim, Germany, 2006.
[4]
V. Matějka, Y. Lu, L. Jiao, L. Huang, G. Simha Martynková, and V. Tomá?ek, “Effects of silicon carbide particle sizes on friction-wear properties of friction composites designed for car brake lining applications,” Tribology International, vol. 43, no. 1-2, pp. 144–151, 2010.
[5]
M. K. Surappa, “Aluminum matrix composites: challenges and opportunities,” Sadhana, vol. 28, no. 1-2, pp. 319–334, 2003.
[6]
J. Z. Gronostajski, H. Marciniak, and A. Matuszak, “Production of composites on the base of AlCu4 alloy chips,” Journal of Materials Processing Technology, vol. 60, no. 1–4, pp. 719–722, 1996.
[7]
J. Z. Gronostajski, J. W. Kaczmar, H. Marciniak, and A. Matuszak, “Production of composites from Al and AlMg2 alloy chips,” Journal of Materials Processing Technology, vol. 300, no. 3-4, pp. 37–41, 1998.
[8]
S. M. Roberts, J. Kusiak, P. J. Withers, S. J. Barnes, and P. B. Prangnell, “Numerical prediction of the development of particle stress in the forging of aluminium metal matrix composites,” Journal of Materials Processing Technology, vol. 60, no. 1–4, pp. 711–718, 1996.
[9]
S. Szczepanik and T. Sleboda, “The influence of the hot deformation and heat treatment on the properties of P/M Al-Cu composites,” Journal of Materials Processing Technology, vol. 60, no. 1-4, pp. 729–733, 1996.
[10]
C. Y. Chung and K. C. Lau, “Mechanical characteristics of hipped SiC particulate-reinforced Aluminum alloy metal matrix composites,” in Proceedings of the 2nd International Conference on Intelligent Processing and Manufacturing of Materials (IPMM '99), vol. 2, pp. 1023–1028, 1999.
[11]
I. ?zdemir, U. C?cen, and K. ?nel, “The effect of forging on the properties of particulate-SiC-reinforced aluminium-alloy composites,” Composites Science and Technology, vol. 60, no. 3, pp. 411–419, 2000.
[12]
C. Badini, G. M. La Vecchia, P. Fino, and T. Valente, “Forging of 2124/ composite: preliminary studies of the effects on microstructure and strength,” Journal of Materials Processing Technology, vol. 116, no. 2-3, pp. 289–297, 2001.
[13]
N. Chawla, J. J. Williams, and R. Saha, “Mechanical behavior and microstructure characterization of sinter-forged SiC particle reinforced aluminum matrix composites,” Journal of Light Metals, vol. 2, no. 4, pp. 215–227, 2002.
[14]
P. Cavaliere and E. Evangelista, “Isothermal forging of metal matrix composites: recrystallization behaviour by means of deformation efficiency,” Composites Science and Technology, vol. 66, no. 2, pp. 357–362, 2006.
[15]
F.-C. Ma, W.-J. Lu, J.-N. Qin, D. Zhang, and B. Ji, “The effect of forging temperature on microstructure and mechanical properties of in situ TiC/Ti composites,” Materials and Design, vol. 28, no. 4, pp. 1339–1342, 2007.
[16]
R. Narayanasamy, T. Ramesh, and K. S. Pandey, “Some aspects on cold forging of aluminium-iron powder metallurgy composite under triaxial stress state condition,” Materials and Design, vol. 29, no. 4, pp. 891–903, 2008.
[17]
L. Ceschini, G. Minak, and A. Morri, “Forging of the AA2618/20 vol.% Al2O3p composite: effects on microstructure and tensile properties,” Composites Science and Technology, vol. 69, no. 11-12, pp. 1783–1789, 2009.
[18]
K. Wu, K. Deng, K. Nie et al., “Microstructure and mechanical properties of /AZ91 composite deformed through a combination of forging and extrusion process,” Materials and Design, vol. 31, no. 8, pp. 3929–3932, 2010.
[19]
B. Ramesh and T. Senthilvelan, “Formability characteristics of Aluminium based composites—a review,” International Journal of Engineering and Technology, vol. 2, no. 1, pp. 1–6, 2010.
[20]
G. Sutradhar, R. Behera, A. Dutta, S. Das, K. Majumdar, and D. Chatterjee, “An experimental study on the effect of silicon carbide particulates (SiCp) on the mechanical properties like machinability and forgeability of stir-cast aluminum alloy metal matrix composites,” Indian Foundry Journal, vol. 56, no. 5, pp. 43–50, 2010.
[21]
S. Singh, A. K. Jha, and S. Kumar, “Analysis of dynamic effects during high-speed forging of sintered preforms,” Journal of Materials Processing Technology, vol. 112, pp. 53–62, 2001.
[22]
S. Singh, A. K. Jha, and S. Kumar, “Dynamic effects during sinter forging of axi-symmetric hollow disc preforms,” International Journal of Machine Tools and Manufacture, vol. 47, no. 7-8, pp. 1101–1113, 2007.
[23]
P. Chandrasekhar and S. Singh, “Investigation of dynamic effects during cold upset-forging of sintered aluminium truncated conical preforms,” Journal of Materials Processing Technology, vol. 211, no. 7, pp. 1285–1295, 2011.
[24]
P. S. Mithun and M. R. Devaraj, “Development of Aluminum based composite material,” International Journal of Applied Science and Engineering Research, vol. 6, no. 1, pp. 121–130, 2011.
[25]
C. L. Downey and H. A. Kuhn, “Deformation characteristics and plastic theory of sintered powder materials,” International Journal of Powder Metallurgy, vol. 7, pp. 15–21, 1971.
[26]
A. W. Rooks, “The effect of die temperature on metal flow and die wear during high-speed hot forging,” in Proceedings of 15th International MTDR Conference, p. 487, 1974.
[27]
A. K. Jha and S. Kumar, “Compatibility of sintered materials during cold forging,” International Journal of Materials and Product Technology, vol. 9, pp. 281–299, 1994.
[28]
B. Avitzur, Metal Forming Processes and Analysis, McGraw Hill, New York, Ny, USA, 1968.
[29]
S. Kobayashi, S. Oh, and T. Altan, Metal Forming and the Finite Element Method, Oxford University Press, Oxford, UK, 1989.