%0 Journal Article %T Investigations into Deformation Characteristics during Open-Die Forging of SiCp Reinforced Aluminium Metal Matrix Composites %A Deep Verma %A P. Chandrasekhar %A S. Singh %A S. Kar %J Journal of Powder Technology %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/183713 %X The deformation characteristics during open-die forging of silicon carbide particulate reinforced aluminium metal matrix composites (SiCp AMC) at cold conditions are investigated. The material was fabricated by liquid stir casting method in which preheated SiC particles were mixed with molten LM6 aluminium casting alloy and casted in the silicon mould. Finally, preforms obtained were machined in required dimensions. Two separate cases of deformation, that is, open-die forging of solid disc and solid rectangular preforms, were considered. Both upper bound theoretical analysis and experimental investigations were performed followed by finite element simulation using DEFORM, considering composite interfacial friction law, barreling of preform vertical sides, and inertia effects, that is, effect of die velocity on various deformation characteristics like effective stress, strain, strain rate, forging load, energy dissipations, and height reduction. Results have been presented graphically and critically investigated to evaluate the concurrence among theoretical, experimental, and finite element based computational findings. 1. Introduction Metal matrix composite (MMC) as hybrid materials has attracted attention of many researchers in recent years. MMCs provide significantly enhanced properties over conventional monolithic materials, for example, higher strength, stiffness, hardness, elastic modulus, and wear resistance and thus may be subjected to various forming operations like rolling, extrusion, forging, and so forth to manufacture numerous engineering components Sulaiman et al. and Murashkevich et al. [1, 2]. Automobile pistons, valves, cylinder liners, piston rings, connecting rods, crankshaft, gear parts, suspension arms, turbocharger impellers, guide vanes in gas turbines, ventral fins and fuel-access cover doors in military aircrafts, rotor blade sleeves in helicopters, flight-control hydraulic manifolds, brake discs of transport vehicles, bicycle frames, and so forth are the most common engineering applications seen as cited by Kainer et al. and Matejka et al. [3, 4]. Various composite products tailored-made to the demands of different industrial applications by suitable combinations of matrix materials, reinforcements, and processing routes were also reported by Surappa [5]. The present paper is an attempt to investigate the various deformation characteristics during open-die forging of SiCp reinforced aluminium metal matrix composites (AMC). The objective was to synthesize a metal matrix composite material and further process it mechanically to %U http://www.hindawi.com/journals/jpt/2013/183713/