Escherichia coli (E. coli) is associated with necrotizing fasciitis (type I) and can induce enough damage to tissue causing hypoxia. Three ester derivatives of the broad-spectrum antibiotic ciprofloxacin were placed into bacteria culture simultaneously with the parent ciprofloxacin (drug 1) to ascertain the level of antibacterial activity. The n-propyl (drug 2), n-pentyl (drug 3), and n-octyl (drug 4) esters of ciprofloxacin were synthesized under mixed phase conditions and by microwave excitation. The formation of ester derivatives of ciprofloxacin modified important molecular properties such as Log P and polar surface area which improves tissue penetration, yet preserved strong antibacterial activity. The Log P values for drugs 1, 2, 3, and 4 became ?0.701, 0.437, 1.50, and 3.02, respectively. The polar surface areas for drugs 1, 2, 3, and 4 were determined to be 74.6 Angstroms2, 63.6 Angstroms2, 63.6 Angstroms2, and 63.6 Angstroms2, respectively. These values of Log P and polar surface area improved tissue penetration, as indicated by the determination of dermal permeability coefficient ( ) and subsequently into the superficial fascial layer. All drugs induced greater than 60% bacterial cell death at concentrations less than 1.0 micrograms/milliliter. The ester derivatives of ciprofloxacin showed strong antibacterial activity toward penicillin resistant E. coli. 1. Introduction Necrotizing fasciitis is an often fatal infection of the softtissue that will commonly begin after some form of trauma [1]. This softtissue infection involves the superficial fascial layers (or hypodermis) of the abdomen, extremities, or perineum [1]. This infection of the deep layers of skin and subcutaneous tissues easily spreads across the fascial plane. A polymicrobial infection is more common, involving gram-positive, gram-negative (i.e., Escherichia col (E. coli)), aerobic, and anaerobic bacteria [1]. Quick diagnosis, application of broad-spectrum antibiotics, and/or surgical intervention is required for successful patient outcome [1]. The three types of necrotizing fasciitis are based on anatomy; the depth of infection; and/or (3) the microbial source for the infection [2]. Type I infection is by polymicrobial incidents involving gram-positive cocci, Gram-negative rods, and anaerobes [2]. For Type I episodes, one type of bacteria can aid the survival and growth of another bacteria (this is synergy). Common type I category bacteria include E. coli, Klebsiella, Staphylococcus aureus, and Streptococcus species [2]. The Treatment of the infection requires strong
References
[1]
R. A. Fontes, C. M. Ogilvie, and T. Miclau, “Necrotizing soft-tissue infections,” The Journal of the American Academy of Orthopaedic Surgeons, vol. 8, no. 3, pp. 151–158, 2000.
[2]
B. Sarani, M. Strong, J. Pascual, and C. W. Schwab, “Necrotizing fasciitis: current concepts and review of the literature,” Journal of the American College of Surgeons, vol. 208, no. 2, pp. 279–288, 2009.
[3]
J. D. Urshel, “Necrotizing soft tissue infections,” Postgraduate Medical Journal, vol. 75, pp. 645–649, 1999.
[4]
H. Shaked, Z. Samra, M. Paul, et al., “Unusual “flesh-eating” strain of Escherichia coli,” Journal of Clinical Microbiology, vol. 48, no. 10, pp. 3794–3796, 2010.
[5]
D. M. Li, L. D. Lun, and X. R. Chun, “Necrotising fasciitis with Escherichia coli,” The Lancet Infectious Diseases, vol. 6, no. 7, pp. 456–459, 2006.
[6]
V. B. D. G. Salvador, M. D. S. Juan, J. A. Salisi, and R. J. Consunji, “Clinical and microbiological spectrum of necrotizing fasciitis in surgical patients at a Philippine university medical centre,” Asian Journal of Surgery, vol. 33, no. 1, pp. 51–58, 2010.
[7]
R. Muqim, “Necrotizing fasciitis: management and outcome,” Journal of the College of Physicians and Surgeons Pakistan, vol. 13, no. 12, pp. 711–714, 2003.
[8]
C. Lee and C. Oh, “Necrotizing fasciitis of genitalia,” Urology, vol. 13, no. 6, pp. 604–606, 1979.
[9]
H. Van de Waterbeemd, G. Camenisch, G. Folkers, and O. A. Raevsky, “Estimation of Caco-2 cell permeability using calculated molecular descriptors,” Quantitative Structure-Activity Relationships, vol. 15, no. 6, pp. 480–490, 1996.
[10]
D. E. Clark, “Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption,” Journal of Pharmaceutical Sciences, vol. 88, no. 8, pp. 807–814, 1999.
[11]
P. Ertl, B. Rohde, and P. Selzer, “Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties,” Journal of Medicinal Chemistry, vol. 43, no. 20, pp. 3714–3717, 2000.
[12]
J. Majeski and E. Majeski, “Necrotizing fasciitis: improved survival with early recognition by tissue biopsy and aggressive surgical treatment,” Southern Medical Journal, vol. 90, no. 11, pp. 1065–1068, 1997.
[13]
L. R. Wiseman and J. A. Balfour, “Ciprofloxacin. A review of its pharmacological profile and therapeutic use in the elderly,” Drugs and Aging, vol. 4, no. 2, pp. 145–173, 1994.
[14]
A. Acharya, R. Gurung, B. Khanal, and A. Ghimire, “Bacteriology and antibiotic susceptibility pattern of peritonsillar abscess,” Journal of the Nepal Medical Association, vol. 49, no. 178, pp. 139–142, 2010.
[15]
D. Longo, A. Fauci, D. Kasper, et al., Principles of Internal Medicine, McGraw-Hill Company, New York, NY, USA, 18th edition, 2011.
[16]
C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,” Advanced Drug Delivery Reviews, vol. 23, no. 1-3, pp. 3–25, 1997.
[17]
H. A. Bensen and A. C. Watkinson, Topical and Transdermal Drug Delivery, John Wiley & Sons, New York, NY, USA, 2012.
[18]
A. R. Katritzky, D. A. Dobchev, D. C. Fara et al., “Skin permeation rate as a function of chemical structure,” Journal of Medicinal Chemistry, vol. 49, no. 11, pp. 3305–3314, 2006.
[19]
G. L. Flynn, Principles of Route-to-Route Extrapolation for Risk Assessment, Elsevier, New York, NY, USA, 1990.
[20]
D. E. Clark, “Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration,” Journal of Pharmaceutical Sciences, vol. 88, no. 8, pp. 815–821, 1999.
[21]
N. Boyd and M. D. Nailor, “Combination antibiotic therapy for empiric and definitive treatment of gram-negative infections: insights from the society of infectious diseases pharmacists,” Pharmacotherapy, vol. 31, no. 11, pp. 1073–1084, 2011.
[22]
D. M. Livermore, “The need for new antibiotics,” Clinical Microbiology and Infection, vol. 10, 4, pp. 1–9, 2004.
[23]
R. Bartzatt, S. L. G. Cirillo, and J. D. Cirillo, “Design of ciprofloxacin derivatives that inhibit growth of methicillin resistant staphylococcus aureus (MRSA) and methicillin susceptible staphylococcus aureus (MSSA),” Medicinal Chemistry, vol. 6, no. 2, pp. 51–56, 2010.
[24]
R. Bartzatt, S. L. Cirillo, and J. D. Cirillo, “Antibacterial agents inhibiting growth of ampicillin resistant Escherichia coli,” Current Trends in Medicinal Chemistry. In press.
[25]
L. Aguilar, M. J. Gimenez, C. Garcia-Rey, et al., “New strategies to overcome antimicrobial resistance in Streptococcus pneumoniae with β-lactam antibiotics,” Journal of Antimicrobial Chemotherapy, vol. 50, S2, pp. 93–100, 2002.
[26]
S. H. Zinner, “The search for new antimicrobials: why we need new options,” Expert Review of Anti-Infective Therapy, vol. 3, no. 6, pp. 907–913, 2005.
[27]
M. A. Fakhree, D. R. Delgado, F. Martínez, and A. Jouyban, “The importance of dielectric constant for drug solubility prediction in binary solvent mixtures: electrolytes and zwitterions in water+ethanol,” AAPS PharmSciTech, vol. 11, no. 4, pp. 1726–1729, 2010.
[28]
T. Thorsteinsson, M. Masson, and T. Loftsson, “Dermal delivery of ETH-615, a zwitterionic drug,” Drug Development and Industrial Pharmacy, vol. 26, no. 7, pp. 709–714, 2000.
[29]
T. Hatanaka, T. Kamon, C. Uozumi et al., “Influence of pH on skin permeation of amino acids,” Journal of Pharmacy and Pharmacology, vol. 48, no. 7, pp. 675–679, 1996.
[30]
R. A. Scherrer and S. M. Howard, “Use of distribution coefficients in quantitative structure-activity relationships,” Journal of Medicinal Chemistry, vol. 20, no. 1, pp. 53–58, 1977.
[31]
S. H. Hilal, S. W. Karickhoff, and L. A. Carreira, “Prediction of the solubility, activity coefficient and liquid/liquid partition coefficient of organic compounds,” QSAR and Combinatorial Science, vol. 23, no. 9, pp. 709–720, 2004.
[32]
S. K. Bhal, K. Kassam, I. G. Peirson, and G. M. Pearl, “The rule of five revisited: applying log D in place of log P in drug-likeness filters,” Molecular Pharmaceutics, vol. 4, no. 4, pp. 556–560, 2007.