全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Outline of Prognosis and New Advances in Diagnosis of Oral Squamous Cell Carcinoma (OSCC): Review of the Literature

DOI: 10.1155/2013/519312

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. Oral squamous cell carcinoma (OSCC) has a remarkable incidence over the world and a fairly strenuous prognosis, encouraging further research on the prognostic factors and new techniques for diagnosis that might modify disease outcome. Data Sources. A web-based search for all types of articles published was initiated using Medline/Pub Med, with the key words such as oral cancer, prognostic factors of oral cancer, diagnostic method of oral cancer, and imaging techniques for diagnosis of oral cancer. The search was restricted to articles published in English, with no publication date restriction (last update April, 2013). Review Methods. In this paper, I approach the factors of prognosis of OSCC and the new advances in diagnostic technologies as well. I also reviewed available studies of the tissue fluorescence spectroscopy and other noninvasive diagnostic aids for OSCC. Results. The outcome is greatly influenced by the stage of the disease (especially TNM). Prognosis also depends or varies with tumour primary site, nodal involvement, tumour thickness, and the status of the surgical margins. Conclusion. Tumour diameter is not the most accurate when compared to tumour thickness or depth of invasion, which can be related directly to prognosis. There is a wide agreement on using ultrasound guided fine needle aspiration biopsies in the evaluation of lymph node metastasis. 1. Introduction Head and neck malignancies constitute approximately 5% of all malignant tumors of the body [1]. Squamous cell carcinoma represents almost 95% of the head and neck cancers. The incidence of oral cancer varies from region to another in the world. The most common oral sites involved vary as well from region to another. It appears that the geographic location has no role with this rather than it is the oral habits popular in certain countries which vary from region to another. In certain countries, such as Sri Lanka, India, Pakistan, and Bangladesh, oral cancer is the most common type of malignancy. In India oral cancer represent more than 50% of all malignancy reported. The high incidence rate in these countries may relate to specific oral habits such as Betel and similar habits. Approximatively 30–35% of the tumors (OSCC) occur a tongue, 20–25% at the gum, 5–7% at the floor of the mouth, 4–6% at the soft palate and only 2-3% at the cheeks [2]. The tumors were usually diagnosed at the ages between 50 and 79 years, 96,6% being over 40 years old. Generally, Oral cancer incidence rates have overall increased since the mid-1970s, with most of this increase occurring since

References

[1]  S. L. Parker, T. Tong, S. Bolden, and P. A. Wingo, “Cancer statistics, 1996,” Ca-A Cancer Journal for Clinicians, vol. 46, no. 1, pp. 5–27, 1996.
[2]  G. E. Laramore, C. B. Scott, M. Al-Sarraf et al., “Adjuvant chemotherapy for resectable squamous cell carcinomas of the head and neck: report on intergroup study 0034,” International Journal of Radiation Oncology Biology Physics, vol. 23, no. 4, pp. 705–713, 1992.
[3]  S. Petti, M. Masood, G. A. Messano, and C. Scully, “Alcohol is not a risk factor for oral cancer in nonsmoking, betel quid non-chewing individuals. A meta-analysis update,” Annali Di Igiene, vol. 25, no. 1, pp. 3–14, 2013.
[4]  C.-C. Su and H.-C. Ho, “Neck mass with epithelial papillae: a diagnostic pitfall in aspiration cytology,” Otolaryngology—Head and Neck Surgery, vol. 137, no. 6, pp. 979–980, 2007.
[5]  B. Rodu and C. Jansson, “Smokeless tobacco and oral cancer: a review of the risks and determinants,” Critical Reviews in Oral Biology and Medicine, vol. 15, no. 5, pp. 252–263, 2004.
[6]  S. Warnakulasuriya, “Smokeless tobacco and oral cancer,” Oral Diseases, vol. 10, no. 1, pp. 1–4, 2004.
[7]  C. Scully, “Oral squamous cell carcinoma; from an hypothesis about a virus, to concern about possible sexual transmission,” Oral Oncology, vol. 38, no. 3, pp. 227–234, 2002.
[8]  S. R. Mallery, G. D. Stoner, P. E. Larsen et al., “Formulation and in-vitro and in-vivo evaluation of a mucoadhesive gel containing freeze dried black raspberries: implications for oral cancer chemoprevention,” Pharmaceutical Research, vol. 24, no. 4, pp. 728–737, 2007.
[9]  P. Boyle, “Cancer, cigarette smoking and premature death in Europe: a review including the Recommendations of European Cancer Experts Consensus Meeting, Helsinki, October 1996,” Lung Cancer, vol. 17, no. 1, pp. 1–60, 1997.
[10]  C. la Vecchia, R. Pagano, and A. Decarli, “Smoking prevalence in younger Italians,” Tobacco Control, vol. 5, no. 3, pp. 231–232, 1996.
[11]  D. V. Kleinman, P. A. Swango, J. J. Pindborg, and P. Gupta, “Toward assessing trends in oral mucosal lesions: lessons learned from oral cancer,” Advances in Dental Research, vol. 7, no. 1, pp. 32–41, 1993.
[12]  D. V. Kleinman, P. A. Swango, and J. J. Pindborg, “Epidemiology of oral mucosal lesions in United States schoolchildren: 1986-87,” Community Dentistry and Oral Epidemiology, vol. 22, no. 4, pp. 243–253, 1994.
[13]  S. G. Patel and J. P. Shah, “TNM staging of cancers of the head and neck: striving for uniformity among diversity,” Ca-A Cancer Journal for Clinicians, vol. 55, no. 4, pp. 242–258, 2005.
[14]  C. Scully and R. Bedi, “Ethnicity and oral cancer,” The Lancet Oncology, vol. 1, no. 1, pp. 37–42, 2000.
[15]  C. Scully and J. Bagan, “Oral squamous cell carcinoma overview,” Oral Oncology, vol. 45, no. 4-5, pp. 301–308, 2009.
[16]  J. A. Woolgar, “Histopathological prognosticators in oral and oropharyngeal squamous cell carcinoma,” Oral Oncology, vol. 42, no. 3, pp. 229–239, 2006.
[17]  M. Noguchi, H. Kinjyo, G.-I. Kohama, and K. Nakamori, “Invasive front in oral squamous cell carcinoma: image and flow cytometric analysis with clinicopathologic correlation,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 93, no. 6, pp. 682–687, 2002.
[18]  P. Garzino-Demo, A. Dell'Acqua, P. Dalmasso et al., “Clinicopathological parameters and outcome of 245 patients operated for oral squamous cell carcinoma,” Journal of Cranio-Maxillofacial Surgery, vol. 34, no. 6, pp. 344–350, 2006.
[19]  M. M. Urist, C. J. O'Brien, S.-J. Soong, D. W. Visscher, and W. A. Maddox, “Squamous cell carcinoma of the buccal mucosa: analysis of prognostic factors,” American Journal of Surgery, vol. 154, no. 4, pp. 411–414, 1987.
[20]  A. R. Shaha, R. H. Spiro, J. P. Shah, and E. W. Strong, “Squamous carcinoma of the floor of the mouth,” American Journal of Surgery, vol. 148, no. 4, pp. 455–459, 1984.
[21]  H. Platz, R. Fries, M. Hudec, A. M. Tjoa, and R. R. Wagner, “The prognostic relevance of various factors at the time of the first admission of the patient. Retrospective DOSAK study on carcinoma of the oral cavity,” Journal of Maxillofacial Surgery, vol. 11, no. 1, pp. 3–12, 1983.
[22]  J. D. Crissman, W. Y. Liu, J. L. Gluckman, and G. Cummings, “Prognostic value of histopathologic parameters in squamous cell carcinoma of the oropharynx,” Cancer, vol. 54, no. 12, pp. 2995–3001, 1984.
[23]  C. Moore, J. G. Kuhns, and R. A. Greenberg, “Thickness as prognostic aid in upper aerodigestive tract cancer,” Archives of Surgery, vol. 121, no. 12, pp. 1410–1414, 1986.
[24]  C. M. Bier-Laning, R. Durazo-Arvizu, K. Muzaffar, and G. J. Petruzzelli, “Primary tumor thickness as a risk factor for Contralateral cervical metastases in T1/T2 oral tongue squamous cell carcinoma,” Laryngoscope, vol. 119, no. 5, pp. 883–888, 2009.
[25]  H. Fukano, H. Matsuura, Y. Hasegawa, and S. Nakamura, “Depth of invasion as a predictive factor for cervical lymph node metastasis in tongue carcinoma,” Head & Neck, vol. 19, no. 3, pp. 205–210, 1997.
[26]  C. T. Lwin, R. Hanlon, D. Lowe et al., “Accuracy of MRI in prediction of tumour thickness and nodal stage in oral squamous cell carcinoma,” Oral Oncology, vol. 48, no. 2, pp. 149–154, 2012.
[27]  J. F. Teichgraeber and A. A. Clairmont, “The incidence of occult metastases for cancer of the oral tongue and floor of the mouth: treatment rationale,” Head & Neck Surgery, vol. 7, no. 1, pp. 15–21, 1984.
[28]  H. Keski-S?ntti, T. Atula, J. T?rnwall, P. Koivunen, and A. M?kitie, “Elective neck treatment versus observation in patients with T1/T2 N0 squamous cell carcinoma of oral tongue,” Oral Oncology, vol. 42, no. 1, pp. 96–101, 2006.
[29]  K. H. Calhoun, P. Fulmer, R. Weiss, and J. A. Hokanson, “Distant metastases from head and neck squamous cell carcinomas,” Laryngoscope, vol. 104, no. 10, pp. 1199–1205, 1994.
[30]  D. Kademani, R. B. Bell, S. Bagheri et al., “Prognostic factors in intraoral squamous cell carcinoma: the influence of histologic grade,” Journal of Oral and Maxillofacial Surgery, vol. 63, no. 11, pp. 1599–1605, 2005.
[31]  I. Haberal, H. ?elik, H. G??men, H. Akmansu, M. Y?rük, and C. ?zeri, “Which is important in the evaluation of metastatic lymph nodes in head and neck cancer: palpation, ultrasonography, or computed tomography?” Otolaryngology—Head and Neck Surgery, vol. 130, no. 2, pp. 197–201, 2004.
[32]  G. Esen, “Ultrasound of superficial lymph nodes,” European Journal of Radiology, vol. 58, no. 3, pp. 345–359, 2006.
[33]  E. W. H. To, W. M. Tsang, J. Cheng et al., “Is neck ultrasound necessary for early stage oral tongue carcinoma with clinically N0 neck?” Dentomaxillofacial Radiology, vol. 32, no. 3, pp. 156–159, 2003.
[34]  M. Knappe, M. Louw, and R. T. Gregor, “Ultrasonography-guided fine-needle aspiration for the assessment of cervical metastases,” Archives of Otolaryngology—Head and Neck Surgery, vol. 126, no. 9, pp. 1091–1096, 2000.
[35]  N. Anand, N. Chaudhary, M. K. Mittal, and R. Prasad, “Comparison of the efficacy of clinical examination, ultrasound neck and computed tomography in detection and staging of cervical lymph node metastasis in head and neck cancers,” Indian Journal of Otolaryngology and Head and Neck Surgery, vol. 59, no. 1, pp. 19–23, 2007.
[36]  P. M. Som, “Lymph nodes of the neck,” Radiology, vol. 165, no. 3, pp. 593–600, 1987.
[37]  A. Ahuja and M. Ying, “Sonography of neck lymph nodes. Part II: abnormal lymph nodes,” Clinical Radiology, vol. 58, no. 5, pp. 359–366, 2003.
[38]  A. Ahuja, M. Ying, S. F. Leung, and C. Metreweli, “The sonographic appearance and significance of cervical metastatic nodes following radiotherapy for nasopharyngaeal carcinoma,” Clinical Radiology, vol. 51, no. 10, pp. 698–701, 1996.
[39]  T. S. Atula, M. J. Varpula, T. J. I. Kurki, P.-J. Klemi, and R. Grénman, “Assessment of cervical lymph node status in head and neck cancer patients: palpation, computed tomography and low field magnetic resonance imaging compared with ultrasound-guided fine-needle aspiration cytology,” European Journal of Radiology, vol. 25, no. 2, pp. 152–161, 1997.
[40]  R. B. J. de Bondt, P. J. Nelemans, P. A. M. Hofman et al., “Detection of lymph node metastases in head and neck cancer: a meta-analysis comparing US, USgFNAC, CT and MR imaging,” European Journal of Radiology, vol. 64, no. 2, pp. 266–272, 2007.
[41]  A. Mashberg, “Toluidine blue,” Journal of the Canadian Dental Association, vol. 61, no. 11, pp. 922–944, 1995.
[42]  A. Gupta, M. Singh, R. Ibrahim, and R. Mehrotra, “Utility of toluidine blue staining and brush biopsy in precancerous and cancerous oral lesions,” Acta Cytologica, vol. 51, no. 5, pp. 788–794, 2007.
[43]  I. C. Martin, C. J. Kerawala, and M. Reed, “The application of toluidine blue as a diagnostic adjunct in the detection of epithelial dysplasia,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 85, no. 4, pp. 444–446, 1998.
[44]  D. Rosenberg and S. Cretin, “Use of meta-analysis to evaluate tolonium chloride in oral cancer screening,” Oral Surgery, Oral Medicine, Oral Pathology, vol. 67, no. 5, pp. 621–627, 1989.
[45]  J. J. Sciubba, “Improving detection of precancerous and cancerous oral lesions: computer-assisted analysis of the oral brush biopsy,” Journal of the American Dental Association, vol. 130, no. 10, pp. 1445–1457, 1999.
[46]  C. Scheifele, A.-M. Schmidt-Westhausen, T. Dietrich, and P. A. Reichart, “The sensitivity and specificity of the OralCDx technique: evaluation of 103 cases,” Oral Oncology, vol. 40, no. 8, pp. 824–828, 2004.
[47]  C. Scully, J. V. Bagan, C. Hopper, and J. B. Epstein, “Oral cancer: current and future diagnostic techniques,” American Journal of Dentistry, vol. 21, no. 4, pp. 199–209, 2008.
[48]  J. Handschel, D. ?z, N. Pomjanski et al., “Additional use of DNA-image cytometry improves the assessment of resection margins,” Journal of Oral Pathology and Medicine, vol. 36, no. 8, pp. 472–475, 2007.
[49]  B. G. Zimmermann and D. T. Wong, “Salivary mRNA targets for cancer diagnostics,” Oral Oncology, vol. 44, no. 5, pp. 425–429, 2008.
[50]  R. Mehrotra, M. Hullmann, R. Smeets, T. E. Reichert, and O. Driemel, “Oral cytology revisited,” Journal of Oral Pathology and Medicine, vol. 38, no. 2, pp. 161–166, 2009.
[51]  C. S. Betz, T. Makriniotis, H. Stepp et al., “Diagnosis of head & neck malignancy using fluorescence spectroscopy and imaging,” Head & Neck Oncology, vol. 1, supplement 1, article O4, 2009.
[52]  H. Stepp, A. Johansson, C. S. Betz, and A. Leunig, “Fluorescence spectroscopy and fluorescence imaging for tissue diagnostics—principles and methods,” Head & Neck Oncology, vol. 1, supplement 1, article O3, 2009.
[53]  B. D. Kulbersh, R. D. Duncan, J. S. Magnuson, J. B. Skipper, K. Zinn, and E. L. Rosenthal, “Sensitivity and specificity of fluorescent immunoguided neoplasm detection in head and neck cancer xenografts,” Archives of Otolaryngology—Head and Neck Surgery, vol. 133, no. 5, pp. 511–515, 2007.
[54]  M. A. A. Suhr, C. Hopper, L. Jones, J. G. D. George, S. G. Bown, and A. J. MacRobert, “Optical biopsy systems for the diagnosis and monitoring of superficial cancer and precancer,” International Journal of Oral and Maxillofacial Surgery, vol. 29, no. 6, pp. 453–457, 2000.
[55]  T. Upile, W. Jerjes, H. J. C. M. Sterenborg et al., “Head & neck optical diagnostics: vision of the future of surgery,” Head & Neck Oncology, vol. 1, article 25, 2009.
[56]  W. Jerjes, T. Upile, A. Petrie et al., “Clinicopathological parameters, recurrence, locoregional and distant metastasis in 115 T1-T2 oral squamous cell carcinoma patients,” Head & Neck Oncology, vol. 2, article 9, 2010.
[57]  J. Ebenezar, S. Ganesan, P. Aruna, R. Muralinaidu, K. Renganathan, and T. R. Saraswathy, “Noninvasive fluorescence excitation spectroscopy for the diagnosis of oral neoplasia in vivo,” Journal of Biomedical Optics, vol. 17, no. 9, Article ID 97007-1, 2012.
[58]  D. Shin, N. Vigneswaran, A. Gillenwater, and R. Richards-Kortum, “Advances in fluorescence imaging techniques to detect oral cancer and its precursors,” Future Oncology, vol. 6, no. 7, pp. 1143–1154, 2010.
[59]  S. Duraipandian, M. S. Bergholt, W. Zheng et al., “Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination,” Journal of Biomedical Optics, vol. 17, no. 8, Article ID 081418, 2012.
[60]  L. B. Lovat, K. Johnson, G. D. Mackenzie et al., “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett's oesophagus,” Gut, vol. 55, no. 8, pp. 1078–1083, 2006.
[61]  H. J. C. M. Sterenborg, M. J. H. Witjes, S. de Visscher, and A. Amelink, “Differential pathlength spectroscopy for diagnosis of head and neck cancer,” Head & Neck Oncology, vol. 1, supplement 1, article O7, 2009.
[62]  B. W. Pogue, V. Krishnaswamy, A. Laughney, K. D. Paulsen, P. J. Hoopes, and P. B. G. Allende, “Spectral scatter scanning system for surgical margin detection,” Head & Neck Oncology, vol. 1, supplement 1, article O12, 2009.
[63]  C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, and G. Tosi :, “Microimaging FT-IR of head and neck tumours. The case of salivary glands,” Head & Neck Oncology, vol. 1, supplement 1, article O13, 2009.
[64]  G. Bradley, E. W. Odell, S. Raphael et al., “Abnormal DNA content in oral epithelial dysplasia is associated with increased risk of progression to carcinoma,” British Journal of Cancer, vol. 103, no. 9, pp. 1432–1442, 2010.
[65]  F. Fend, M. R. Emmert-Buck, R. Chuaqui et al., “Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis,” American Journal of Pathology, vol. 154, no. 1, pp. 61–66, 1999.
[66]  B. L. Ziober, M. G. Mauk, E. M. Falls, Z. Chen, A. F. Ziober, and H. H. Bau, “Lab-on-a-chip for oral cancer screening and diagnosis,” Head & Neck, vol. 30, no. 1, pp. 111–121, 2008.
[67]  A. D. King, “Multimodality imaging of head and neck cancer,” Cancer Imaging, vol. 7, no. A, pp. S37–S46, 2007.
[68]  K. E. Rusthoven, M. Koshy, and A. C. Paulino, “The role of fluorodeoxyglucose positron emission tomography in cervical lymph node metastases from an unknown primary tumor,” Cancer, vol. 101, no. 11, pp. 2641–2649, 2004.
[69]  E. J. Mahoney and J. H. Spiegel, “Evaluation and management of malignant cervical lymphadenopathy with an unknown primary tumor,” Otolaryngologic Clinics of North America, vol. 38, no. 1, pp. 87–97, 2005.
[70]  M. M. Hanasono, L. D. Kunda, G. M. Segall, G. H. Ku, and D. J. Terris, “Uses and limitations of FDG positron emission tomography in patients with head and neck cancer,” The Laryngoscope, vol. 109, no. 6, pp. 880–885, 1999.
[71]  A. C. Kole, O. E. Nieweg, J. Pruim, et al., “Detection of unknow occult primary tumors using positron emission tomography,” Cancer, vol. 82, no. 6, pp. 1160–1166, 1998.
[72]  W. M. Mendenhall, A. A. Mancuso, J. T. Parsons, S. P. Stringer, and N. J. Cassisi, “Diagnostic evaluation of squamous cell carcinoma metastatic to cervical lymph nodes from an unknown head and neck primary site,” Head & Neck, vol. 20, no. 8, pp. 739–744, 1998.
[73]  A. C. Kole, O. E. Nieweg, J. Pruim, et al., “Detection of unknow occult primary tumors using positron emission tomography,” Cancer, vol. 82, no. 6, pp. 1160–1166, 1998.
[74]  A. A. Safa, L. M. Tran, S. Rege, et al., “The role of positron emission tomography in occult primary head and neck cancers,” The Cancer Journal From Scientific American, vol. 5, no. 4, pp. 214–218, 1999.
[75]  E. di Martino, B. Nowak, H. A. Hassan et al., “Diagnosis and staging of head and neck cancer: a comparison of modern imaging modalities (positron emission tomography, computed tomography, color-coded duplex sonography) with panendoscopic and histopathologic findings,” Archives of Otolaryngology—Head and Neck Surgery, vol. 126, no. 12, pp. 1457–1461, 2000.
[76]  K. M. Greven, D. W. Williams III, W. F. McGuirt Sr. et al., “Serial positron emission tomography scans following radiation therapy of patients with head and neck cancer,” Head & Neck, vol. 23, no. 11, pp. 942–946, 2001.
[77]  M. Jungehülsing, K. Scheidhauer, M. Damm et al., “2[18F]-fluoro-2-deoxy-D-glucose positron emission tomography is a sensitive tool for the detection of occult primary cancer (carcinoma of unknown primary syndrome) with head and neck lymph node manifestation,” Otolaryngology—Head and Neck Surgery, vol. 123, no. 3, pp. 294–301, 2000.
[78]  M. P. Stokkel, K. G. Moons, F. W. ten Broek, P. P. van Rijk, and G. J. Hordijk, “18?F-Fluorodeoxyglucose dual-head positron emission tomography as a procedure for detecting simultaneous primary tumors in cases of head and neck cancer,” Cancer, vol. 86, no. 11, pp. 2370–2377, 1999.
[79]  S. C. Rankin, “PET in face and neck tumours,” Cancer Imaging, vol. 6, no. A, pp. S89–S95, 2006.
[80]  O. S. Aassar, N. J. Fischbein, G. R. Caputo et al., “Metastatic head and neck cancer: role and usefulness of FDG PET in locating occult primary tumors,” Radiology, vol. 210, no. 1, pp. 177–181, 1999.
[81]  M. Maeda, H. Kato, H. Sakuma, S. E. Maier, and K. Takeda, “Usefulness of the apparent diffusion coefficient in line scan diffusion-weighted imaging for distinguishing between squamous cell carcinomas and malignant lymphomas of the head and neck,” American Journal of Neuroradiology, vol. 26, no. 5, pp. 1186–1192, 2005.
[82]  M. Sumi, N. Sakihama, T. Sumi et al., “Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer,” American Journal of Neuroradiology, vol. 24, no. 8, pp. 1627–1634, 2003.
[83]  C. R. Habermann, P. Gossrau, J. Graessner, et al., “Diffusion-weighted echo-planar MRI: a valuable tool for differentiating primary parotid gland tumors?” Rofo, vol. 177, no. 7, pp. 940–945, 2005.
[84]  A. R. Padhani, “Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions,” Journal of Magnetic Resonance Imaging, vol. 16, no. 4, pp. 407–422, 2002.
[85]  D. Ribatti, A. Vacca, and M. Presta, “The discovery of angiogenic factors: a historical review,” General Pharmacology, vol. 35, no. 5, pp. 227–231, 2000.
[86]  J. Folkman, “Angiogenesis in cancer, vascular, rheumatoid and other disease,” Nature Medicine, vol. 1, no. 1, pp. 27–31, 1995.
[87]  M. Atri, “New technologies and directed agents for applications of cancer imaging,” Journal of Clinical Oncology, vol. 24, no. 20, pp. 3299–3308, 2006.
[88]  P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature, vol. 407, no. 6801, pp. 249–257, 2000.
[89]  C. Verhoef, J. H. W. de Wilt, and H. M. W. Verheul, “Angiogenesis inhibitors: perspectives for medical, surgical and radiation oncology,” Current Pharmaceutical Design, vol. 12, no. 21, pp. 2623–2630, 2006.
[90]  T. E. Yankeelov and J. C. Gore, “Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples,” Current Medical Imaging Reviews, vol. 3, no. 2, pp. 91–107, 2009.
[91]  C. Majós, C. Aguilera, M. Cos et al., “In vivo proton magnetic resonance spectroscopy of intraventricular tumours of the brain,” European Radiology, vol. 19, no. 8, pp. 2049–2059, 2009.
[92]  D. A. Sanghvi, “Recent advances in imaging of brain tumors,” Indian Journal of Cancer, vol. 46, no. 2, pp. 82–87, 2009.
[93]  A. A. K. A. Razek, L. G. Elsorogy, N. Y. Soliman, and N. Nada, “Dynamic susceptibility contrast perfusion MR imaging in distinguishing malignant from benign head and neck tumors: a pilot study,” European Journal of Radiology, vol. 77, no. 1, pp. 73–79, 2011.
[94]  J. R. Griffiths, N. J. Taylor, F. A. Howe et al., “The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging,” International Journal of Radiation Oncology Biology Physics, vol. 39, no. 3, pp. 697–701, 1997.
[95]  M. Rijpkema, J. H. A. M. Kaanders, F. B. M. Joosten, A. J. van der Kogel, and A. Heerschap, “Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging,” International Journal of Radiation Oncology Biology Physics, vol. 53, no. 5, pp. 1185–1191, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133