全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Essential Role of Thioredoxin 2 in Mitigating Oxidative Stress in Retinal Epithelial Cells

DOI: 10.1155/2013/185825

Full-Text   Cite this paper   Add to My Lib

Abstract:

The retina is constantly subjected to oxidative stress, which is countered by potent antioxidative systems present in retinal pigment epithelial (RPE) cells. Disruption of these systems leads to the development of age-related macular degeneration. Thioredoxin 2 (Trx2) is a potent antioxidant, which acts directly on mitochondria. In the present study, oxidative stress was induced in the human RPE cell line (ARPE-19) using 4-hydroxynonenal (4-HNE) or C2-ceramide. The protective effect of Trx2 against oxidative stress was investigated by assessing cell viability, the kinetics of cell death, mitochondrial metabolic activity, and expression of heat shock proteins (Hsps) in Trx2-overexpressing cell lines generated by transfecting ARPE cells with an adeno-associated virus vector encoding Trx2. We show that overexpression of Trx2 reduced cell death induced by both agents when they were present in low concentrations. Moreover, early after the induction of oxidative stress Trx2 played a key role in the maintenance of the cell viability through upregulation of mitochondrial metabolic activity and inhibition of Hsp70 expression. 1. Introduction Retinal epithelial (RPE) cells perform multiple functions to maintain retinal homeostasis, including preserving the blood-retinal barrier, nourishing retinal cells by secreting growth factors [1, 2], phagocytosis of shed photoreceptor outer segments [3, 4], and maintenance of the visual cycle by resynthesizing 11-cis retinal [5]. RPE cells located anterior to photoreceptors endure significant oxidative stress because they consume high levels of oxygen and polyunsaturated lipids and are subjected to long-term exposure to light [6]. To protect against oxidative stress, RPE cells employ antioxidant systems, involving glutathione (GSH) S-transferases (GST), heme oxygenase-1 (HO-1), superoxide dismutase (SOD), peroxiredoxin (PRDX1) [7], and thioredoxin (Trx) [8]. Under physiological conditions, the intracellular redox potential is maintained by the synthesis of high concentrations of GSH. However, exposure to high levels of reactive oxygen species (ROS) or free-radical-generating molecules can alter the redox balance. Sulfhydryl groups are critical for the response to oxidative stress, and thioredoxin maintains cellular redox potential [3, 9, 10]. Trx, originally identified in Escherichia coli as a hydrogen donor for ribonucleotide reductase [11], contains two conserved cysteine residues within its active site [12, 13] and scavenges intracellular ROS. Oxidized Trx is reduced by Trx reductase in the presence of NADPH. Thus, Trx

References

[1]  M. M. LaVail, D. Yasumura, M. T. Matthes et al., “Protection of mouse photoreceptors by survival factors in retinal degenerations,” Investigative Ophthalmology and Visual Science, vol. 39, no. 3, pp. 592–602, 1998.
[2]  E. G. Faktorovich, R. H. Steinberg, D. Yasumura, M. T. Matthes, and M. M. LaVail, “Basic fibroblast growth factor and local injury protect photoreceptors from light damage in the rat,” Journal of Neuroscience, vol. 12, no. 9, pp. 3554–3567, 1992.
[3]  E. Sugano, H. Tomita, S. Ishiguro, H. Isago, and M. Tamai, “Nitric oxide-induced accumulation of lipofuscin-like materials is caused by inhibition of cathepsin S,” Current Eye Research, vol. 31, no. 7-8, pp. 607–616, 2006.
[4]  E. Sugano, H. Tomita, T. Abe, A. Yamashita, and M. Tamai, “Comparative study of cathepsins D and S in rat IPE and RPE cells,” Experimental Eye Research, vol. 77, no. 2, pp. 203–209, 2003.
[5]  J. C. Saari, “Vitamin A metabolism in rod and cone visual cycles,” Annual Review of Nutrition, vol. 32, pp. 125–145, 2012.
[6]  S. Beatty, H. Koh, M. Phil, D. Henson, and M. Boulton, “The role of oxidative stress in the pathogenesis of age-related macular degeneration,” Survey of Ophthalmology, vol. 45, no. 2, pp. 115–134, 2000.
[7]  L. Lu, B. C. Oveson, Y. Jo et al., “Increased expression of glutathione peroxidase 4 strongly protects retina from oxidative damage,” Antioxidants and Redox Signaling, vol. 11, no. 4, pp. 715–724, 2009.
[8]  E. Sugano, H. Isago, N. Murayama, M. Tamai, and H. Tomita, “Different anti-oxidant effects of thioredoxin 1 and thioredoxin 2 in retinal epithelial cells,” Cell Structure and Function, vol. 38, no. 1, pp. 81–88, 2013.
[9]  C. M. Grant, “Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions,” Molecular Microbiology, vol. 39, no. 3, pp. 533–541, 2001.
[10]  S. Choudhary, T. Xiao, S. Srivastava et al., “Toxicity and detoxification of lipid-derived aldehydes in cultured retinal pigmented epithelial cells,” Toxicology and Applied Pharmacology, vol. 204, no. 2, pp. 122–134, 2005.
[11]  T. C. Laurent, E. C. Moore, and P. Reichard, “Enzymatic synthesis of deoxyribonucleotides. Iv. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B,” The Journal of Biological Chemistry, vol. 239, pp. 3436–3444, 1964.
[12]  A. Holmgren, “Thioredoxin,” Annual Review of Biochemistry, vol. 54, pp. 237–271, 1985.
[13]  A. Holmgren, “Thioredoxin and glutaredoxin systems,” Journal of Biological Chemistry, vol. 264, no. 24, pp. 13963–13966, 1989.
[14]  C. H. Lillig and A. Holmgren, “Thioredoxin and related molecules—from biology to health and disease,” Antioxidants and Redox Signaling, vol. 9, no. 1, pp. 25–47, 2007.
[15]  T. Abe, E. Sugano, Y. Saigo, and M. Tamai, “Interleukin-1β and barrier function of retinal pigment epithelial cells (ARPE-19): aberrant expression of junctional complex molecules,” Investigative Ophthalmology and Visual Science, vol. 44, no. 9, pp. 4097–4104, 2003.
[16]  E. Sugano, H. Tomita, S. Ishiguro, T. Abe, and M. Tamai, “Establishment of effective methods for transducing genes into iris pigment epithelial cells by using adeno-associated virus type 2,” Investigative Ophthalmology and Visual Science, vol. 46, no. 9, pp. 3341–3348, 2005.
[17]  D. Grimm, A. Kern, M. Pawlita, F. K. Ferrari, R. J. Samulski, and J. A. Kleinschmidt, “Titration of AAV-2 particles via a novel capsid ELISA: packaging of genomes can limit production of recombinant AAV-2,” Gene Therapy, vol. 6, no. 7, pp. 1322–1330, 1999.
[18]  I. Nakashima, W. Liu, A. A. Akhand et al., “4-Hydroxynonenal triggers multistep signal transduction cascades for suppression of cellular functions,” Molecular Aspects of Medicine, vol. 24, no. 4-5, pp. 231–238, 2003.
[19]  F. J. Romero, F. Bosch-Morell, M. J. Romero et al., “Lipid peroxidation products and antioxidants in human disease,” Environmental Health Perspectives, vol. 106, supplement 5, pp. 1229–1234, 1998.
[20]  R. J. Kapphahn, B. M. Giwa, K. M. Berg et al., “Retinal proteins modified by 4-hydroxynonenal: identification of molecular targets,” Experimental Eye Research, vol. 83, no. 1, pp. 165–175, 2006.
[21]  J. L. Louie, R. J. Kapphahn, and D. A. Ferrington, “Proteasome function and protein oxidation in the aged retina,” Experimental Eye Research, vol. 75, no. 3, pp. 271–284, 2002.
[22]  V. Gouazé, M. Mirault, S. Carpentier, R. Salvayre, T. Levade, and N. Andrieu-Abadie, “Glutathione peroxidase-1 overexpression prevents ceramide production and partially inhibits apoptosis in doxorubicin-treated human breast carcinoma cells,” Molecular Pharmacology, vol. 60, no. 3, pp. 488–496, 2001.
[23]  O. Cuvillier, “Sphingosine in apoptosis signaling,” Biochimica et Biophysica Acta, vol. 1585, no. 2-3, pp. 153–162, 2002.
[24]  C. E. Abrahan, G. E. Miranda, D. L. Agnolazza, L. E. Politi, and N. P. Rotstein, “Synthesis of sphingosine is essential for oxidative stress-induced apoptosis of photoreceptors,” Investigative Ophthalmology and Visual Science, vol. 51, no. 2, pp. 1171–1180, 2010.
[25]  T. I. Gudz, K. Tserng, and C. L. Hoppel, “Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide,” Journal of Biological Chemistry, vol. 272, no. 39, pp. 24154–24158, 1997.
[26]  S. O. Abarikwu, A. B. Pant, and E. O. Farombi, “4-Hydroxynonenal induces mitochondrial-mediated apoptosis and oxidative stress in SH-SY5Y human neuronal cells,” Basic and Clinical Pharmacology and Toxicology, vol. 110, no. 5, pp. 441–448, 2012.
[27]  Y. J. Jang, J. Kim, N. J. Kang, K. W. Lee, and H. J. Lee, “Piceatannol attenuates 4-hydroxynonenal-induced apoptosis of PC12 cells by blocking activation of c-jun N-terminal kinase,” Annals of the New York Academy of Sciences, vol. 1171, pp. 176–182, 2009.
[28]  C. L. Miranda, R. L. Reed, H. C. Kuiper, S. Alber, and J. F. Stevens, “Ascorbic acid promotes detoxification and elimination of 4-hydroxy-2(E)-nonenal in human monocytic THP-1 cells,” Chemical Research in Toxicology, vol. 22, no. 5, pp. 863–874, 2009.
[29]  A. Salminen, A. Kauppinen, J. M. T. Hyttinen, E. Toropainen, and K. Kaarniranta, “Endoplasmic reticulum stress in age-related macular degeneration: trigger for neovascularization,” Molecular Medicine, vol. 16, no. 11-12, pp. 535–542, 2010.
[30]  D. O. Dean and M. Tytell, “Hsp25 and -90 immunoreactivity in the normal rat eye,” Investigative Ophthalmology and Visual Science, vol. 42, no. 12, pp. 3031–3040, 2001.
[31]  T. Scheibel and J. Buchner, “The Hsp90 complex—a super-chaperone machine as a novel drug target,” Biochemical Pharmacology, vol. 56, no. 6, pp. 675–682, 1998.
[32]  N. Morishima, “Control of cell fate by Hsp70: more than an evanescent meeting,” Journal of Biochemistry, vol. 137, no. 4, pp. 449–453, 2005.
[33]  K. Abravaya, M. P. Myers, S. P. Murphy, and R. I. Morimoto, “The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression,” Genes and Development, vol. 6, no. 7, pp. 1153–1164, 1992.
[34]  J. Zou, Y. Guo, T. Guettouche, D. F. Smith, and R. Voellmy, “Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1,” Cell, vol. 94, no. 4, pp. 471–480, 1998.
[35]  K. Kaarniranta, T. Ryh?nen, H. M. Karjalainen et al., “Geldanamycin increases 4-hydroxynonenal (HNE)-induced cell death in human retinal pigment epithelial cells,” Neuroscience Letters, vol. 382, no. 1-2, pp. 185–190, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133