%0 Journal Article %T Essential Role of Thioredoxin 2 in Mitigating Oxidative Stress in Retinal Epithelial Cells %A Eriko Sugano %A Namie Murayama %A Maki Takahashi %A Kitako Tabata %A Makoto Tamai %A Hiroshi Tomita %J Journal of Ophthalmology %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/185825 %X The retina is constantly subjected to oxidative stress, which is countered by potent antioxidative systems present in retinal pigment epithelial (RPE) cells. Disruption of these systems leads to the development of age-related macular degeneration. Thioredoxin 2 (Trx2) is a potent antioxidant, which acts directly on mitochondria. In the present study, oxidative stress was induced in the human RPE cell line (ARPE-19) using 4-hydroxynonenal (4-HNE) or C2-ceramide. The protective effect of Trx2 against oxidative stress was investigated by assessing cell viability, the kinetics of cell death, mitochondrial metabolic activity, and expression of heat shock proteins (Hsps) in Trx2-overexpressing cell lines generated by transfecting ARPE cells with an adeno-associated virus vector encoding Trx2. We show that overexpression of Trx2 reduced cell death induced by both agents when they were present in low concentrations. Moreover, early after the induction of oxidative stress Trx2 played a key role in the maintenance of the cell viability through upregulation of mitochondrial metabolic activity and inhibition of Hsp70 expression. 1. Introduction Retinal epithelial (RPE) cells perform multiple functions to maintain retinal homeostasis, including preserving the blood-retinal barrier, nourishing retinal cells by secreting growth factors [1, 2], phagocytosis of shed photoreceptor outer segments [3, 4], and maintenance of the visual cycle by resynthesizing 11-cis retinal [5]. RPE cells located anterior to photoreceptors endure significant oxidative stress because they consume high levels of oxygen and polyunsaturated lipids and are subjected to long-term exposure to light [6]. To protect against oxidative stress, RPE cells employ antioxidant systems, involving glutathione (GSH) S-transferases (GST), heme oxygenase-1 (HO-1), superoxide dismutase (SOD), peroxiredoxin (PRDX1) [7], and thioredoxin (Trx) [8]. Under physiological conditions, the intracellular redox potential is maintained by the synthesis of high concentrations of GSH. However, exposure to high levels of reactive oxygen species (ROS) or free-radical-generating molecules can alter the redox balance. Sulfhydryl groups are critical for the response to oxidative stress, and thioredoxin maintains cellular redox potential [3, 9, 10]. Trx, originally identified in Escherichia coli as a hydrogen donor for ribonucleotide reductase [11], contains two conserved cysteine residues within its active site [12, 13] and scavenges intracellular ROS. Oxidized Trx is reduced by Trx reductase in the presence of NADPH. Thus, Trx %U http://www.hindawi.com/journals/joph/2013/185825/