Nowadays, a very large proportion of new drug candidates emerging from drug discovery programmes are water insoluble and thus poorly bioavailable. To avoid this problem, nanotechnology for drug delivery has gained much interest as a way to improve the solubility problems. Nano refers to particles size range of 1–1000?nm. The reduction of drug particles into the submicron range leads to a significant increase in the dissolution rate and therefore enhances bioavailability. Nanosuspensions are part of nanotechnology. This interacts with the body at subcellular (i.e., molecular) scales with a high degree of specificity and can be potentially translated into targeted cellular and tissue-specific clinical applications designed to achieve maximal therapeutic efficacy with minimal side effects. Production of drugs as nanosuspensions can be developed for drug delivery systems as an oral formulation and nonoral administration. Here, this review describes the methods of pharmaceutical nanosuspension production including advantages and disadvantages, potential benefits, characterization tests, and pharmaceutical applications in drug delivery. 1. Introduction One of the problems facing nanotechnology is the confusion and disagreement among experts about its definition. Nanotechnology is an umbrella term used to define the products, processes, and properties at the nano-microscale that have resulted from the convergence of the physical, chemical, and life sciences. The National Nanotechnology Initiative (NNI) defines, “Nanotechnology as research and development at the atomic, molecular, or macromolecular levels in the sub-100-nm range (w0.1–100?nm) to create structures, devices, and systems that have novel functional properties” [1]. A complete list of the potential applications of nanotechnology is too vast and diverse to discuss in detail, but without doubt, one of the greatest values of nanotechnology will be in the development of new and effective medical treatments [2]. In few words, nanotechnology can be said as “the technology at nanoscale” [3]. 2. Nanomedicine Burgeoning interest in the medical applications of nanotechnology has led to the emergence of a new field called nanomedicine, which involves the use of nanotechnology in drug development and offers ever more exciting promises of new diagnoses and cures [4]. It has been defined as “the monitoring, repair, construction, and control of human biological systems at the molecular level, using engineered nanodevices and nanostructures.” Therefore, nanomedicine adopts the concepts of nanoscale manipulation and
References
[1]
K. J. Morrow, R. Bawa, and C. Wei, “Recent advances in basic and clinical nanomedicine,” Medical Clinics of North America, vol. 91, no. 5, pp. 805–843, 2007.
[2]
S. K. Sahoo, S. Parveen, and J. J. Panda, “The present and future of nanotechnology in human health care,” Nanomedicine, vol. 3, no. 1, pp. 20–31, 2007.
[3]
J. Ramsden, “What is nanotechnology?” in Nanotechnology: An Introduction, pp. 1–14, Elsevier, New York, NY, USA, 2011.
[4]
V. S. W. Chan, “Nanomedicine: an unresolved regulatory issue,” Regulatory Toxicology and Pharmacology, vol. 46, no. 3, pp. 218–224, 2006.
[5]
R. A. Freitas, “What is nanomedicine?” Nanomedicine, vol. 1, no. 1, pp. 2–9, 2005.
[6]
C. Prabhakar and K. B. Krishna, “A review on nanosuspensions in drug delivery,” International Journal of Pharma and Bio Sciences, vol. 2, no. 1, pp. 549–558, 2011.
[7]
J. Chingunpituk, “Nanosuspension technology for drug delivery,” Walailak Journal of Science & Technolog, vol. 4, no. 2, pp. 139–153, 2007.
[8]
B. E. Rabinow, “Nanosuspensions in drug delivery,” Nature Reviews Drug Discovery, vol. 3, no. 9, pp. 785–796, 2004.
[9]
P. Liu, X. Rong, J. Laru et al., “Nanosuspensions of poorly soluble drugs: preparation and development by wet milling,” International Journal of Pharmaceutics, vol. 411, no. 1-2, pp. 215–222, 2011.
[10]
H. M. Ibrahim, H. R. Ismail, A. E. A. Lila, et al., “Formulation and optimization of ocular poly-D, L-lactic acid nano drug delivery system of amphotericin-B using box behnken design,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, no. 2, pp. 342–349, 2012.
[11]
V. B. Patravale, A. A. Date, and R. M. Kulkarni, “Nanosuspensions: a promising drug delivery strategy,” Journal of Pharmacy and Pharmacology, vol. 56, no. 7, pp. 827–840, 2004.
[12]
H. Banavath, K. S. Raju, M. T. Ansari, M. S. Ali, and G. Pattnaik, “Nanosuspension: an attempt to enhance bioavailability of poorly soluble drugs,” International Journal of Pharmaceutical Sciences and Research, vol. 1, no. 9, pp. 1–11, 2010.
[13]
G. A. Reddy and Y. Anilchowdary, “Nanosuspension technology: a review,” IJPI’s Journal of Pharmaceutics and Cosmetology, vol. 2, no. 8, pp. 47–52, 2012.
[14]
X. Zhang, Q. Xia, and N. Gu, “Preparation of all-trans retinoic acid nanosuspensions using a modified precipitation method,” Drug Development and Industrial Pharmacy, vol. 32, no. 7, pp. 857–863, 2006.
[15]
A. Wongmekiat, Y. Tozuka, T. Oguchi, and K. Yamamoto, “Formation of fine drug particles by cogrinding with cyclodextrins. I. The use of β-cyclodextrin anhydrate and hydrate,” Pharmaceutical Research, vol. 19, no. 12, pp. 1867–1872, 2002.
[16]
K. Itoh, A. Pongpeerapat, Y. Tozuka, T. Oguchi, and K. Yamamoto, “Nanoparticle formation of poorly water-soluble drugs from ternary ground mixtures with PVP and SDS,” Chemical and Pharmaceutical Bulletin, vol. 51, no. 2, pp. 171–174, 2003.
[17]
G. P. Kumar and K. G. Krishna, “Nanosuspensions: the solution to deliver hydrophobic drugs,” International Journal of Drug Delivery, vol. 3, no. 4, pp. 546–557, 2011.
[18]
A. Vaghela, M. Jain, H. Limbachiya, and D. P. Bharadia, “Nanosuspension technology,” International Journal of Universal Pharmacy and Life Sciences, vol. 2, no. 2, pp. 306–317, 2012.
[19]
J. P. Sylvestre, M. C. Tang, A. Furtos, G. Leclair, M. Meunier, and J. C. Leroux, “Nanonization of megestrol acetate by laser fragmentation in aqueous milieu,” Journal of Controlled Release, vol. 149, no. 3, pp. 273–280, 2011.
[20]
J. McMillan, E. Batrakova, and H. E. Gendelman, “Cell delivery of therapeutic nanoparticle,” in Progress in Molecular Biology and Translational Science, vol. 104, pp. 571–572, Elsevier, New York, NY, USA, 2011.
[21]
R. H. Müller and K. Peters, “Nanosuspensions for the formulation of poorly soluble drugs I: preparation by a sizereduction technique,” International Journal of Pharmaceutics, vol. 160, pp. 229–237, 1998.
[22]
B. W. Müller and R. H. Müller, “Particle size analysis of latex suspensions and microemulsions by photon correlation spectroscopy,” Journal of Pharmaceutical Science, vol. 73, no. 7, pp. 915–918, 1984.
[23]
R. H. Müller and B. H. L. B?hm, “Emulsions and nanosuspensions for the formulation of poorly soluble drugs,” in Nanosuspensions, R. H. Müller, S. Benita, and B. H. L. B?hm, Eds., pp. 149–174, Medpharm Scientific Publishers, Stuttgart, Germany, 1998.
[24]
R. H. Müller and M. J. Grau, “Increase of dissolution velocity and solubility of poorly water soluble drugs as nanosuspension,” in Proceedings of the World Meeting APGI/APV, vol. 2, pp. 623–624, Paris, France, 1998.
[25]
T. R. Shanthakumar, S. Prakash, R. M. Basavraj, et al., “Comparative pharmacokinetic data of DRF-4367 using nanosuspension and HP_CD formulation. Proceedings of the International Symposium on Advances in Technology and Business Potential of New Drug Delivery Systems,” B. V. Patel Educational Trust and B. V. Patel PERD Centre, vol. 5, abstract 55, p. 75, 2004.
[26]
R. H. Müller and C. Jacobs, “Production and characterization of a budesonide nanosuspension for pulmonary administration,” Pharmaceutical Ressearch, vol. 19, pp. 189–194, 2002.
[27]
T. Blunk, D. F. Hochstrasser, J. C. Sanchez, B. W. Muller, and R. H. Muller, “Colloidal carriers for intravenous drug targeting: plasma protein adsorption patterns on surface-modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis,” Electrophoresis, vol. 14, no. 12, pp. 1382–1387, 1993.
[28]
T. Blunk, M. Lück, A. Calv?r, et al., “Kinetics of plasma protein adsorption on model particles for controlled drug delivery and drug targeting,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 42, pp. 262–268, 1996.
[29]
M. Lück, W. Schroder, S. Harnisch, et al., “Identification of plasma proteins facilitated by enrichment on particulate surfaces: analysis by two-dimensional electrophoresis and N-terminal microsequencing,” Electrophoresis, vol. 18, pp. 2961–2967, 1997.
[30]
M. Lück, B. R. Paulke, W. Schr?der, T. Blunk, and R. H. Müller, “Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics,” Journal of Biomedical Materials Research, vol. 39, no. 3, pp. 478–485, 1997.
[31]
R. H. Müller, “Differential opsonization: a new approach for the targeting of colloidal drug carriers,” Archiv der Pharmazie, vol. 322, p. 700, 1989.
[32]
K. H. Wallis and R. H. Müller, “Determination of the surface hydrophobicity of colloidal dispersions by mini-hydrophobic interaction chromatography,” Pharmazeutische Industrie, vol. 55, pp. 1124–1128, 1993.
[33]
E. Merisko-Liversidge, G. G. Liversidge, and E. R. Cooper, “Nanosizing: a formulation approach for poorly-water-soluble compounds,” European Journal of Pharmaceutical Sciences, vol. 18, no. 2, pp. 113–120, 2003.
[34]
O. Kayser, “Nanosuspensions for the formulation of aphidicolin to improve drug targeting effects against Leishmania infected macrophages,” International Journal of Pharmaceutics, vol. 196, no. 2, pp. 253–256, 2000.
[35]
K. Peters, S. Leitzke, J. E. Diederichs et al., “Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection,” Journal of Antimicrobial Chemotherapy, vol. 45, no. 1, pp. 77–83, 2000.
[36]
B. E. Rabinow, “Nanosuspensions for parenteral delivery,” in Nanoparticulate Drug Delivery Systems, pp. 33–49, Informa Healthcare, London, UK, 2007.
[37]
D. Zheng, Y. Wang, D. Zhang et al., “In vitro antitumor activity of silybin nanosuspension in PC-3 cells,” Cancer Letters, vol. 307, no. 2, pp. 158–164, 2011.
[38]
L. Wu, J. Zhang, and W. Watanabe, “Physical and chemical stability of drug nanoparticles,” Advanced Drug Delivery Reviews, vol. 63, no. 6, pp. 456–469, 2011.
[39]
All trans Retinoic Acid, http://www.thehamner.org/docs/pbpk_11/Day3.Exercise1.ATRA.pdf.
[40]
London Cancer New Drugs Group-APC/DTC Briefing, “Mitotane for the adjuvant treatment of adrenocortical carcinoma,” September 2011, http://www.nelm.nhs.uk/en/Download/?file%3DMDs3NjY0MTM7L3VwbG9hZC9QaXJmZW5pZG9uZV9EZWMgMjAxMS5wZGY_.pdf.
[41]
X. Pu, J. Sun, M. Li, and Z. He, “Formulation of nanosuspensions as a new approach for the delivery of poorly soluble drugs,” Current Nanoscience, vol. 5, no. 4, pp. 417–427, 2009.
[42]
K. Peters, S. Leitzke, J. E. Diederichs et al., “Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection,” Journal of Antimicrobial Chemotherapy, vol. 45, no. 1, pp. 77–83, 2000.
[43]
J. M. Tam, J. T. McConville, R. O. Williams, and K. P. Johnston, “Amorphous cyclosporin nanodispersions for enhanced pulmonary deposition and dissolution,” Journal of Pharmaceutical Sciences, vol. 97, no. 11, pp. 4915–4933, 2008.
[44]
R. Calne, “Cyclosporine as a milestone in immunosuppression,” Transplantation Proceedings, vol. 36, no. 2, pp. 13S–15S, 2004.
[45]
S. Das and P. K. Suresh, “Nanosuspension: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to amphotericin B,” Nanomedicine, vol. 7, no. 2, pp. 242–247, 2011.
[46]
H. P. Thakkar, B. V. Patel, and S. P. Thakkar, “Development and characterization of nanosuspensions of olmesartan medoxomil for bioavailability enhancement,” Journal of Pharmacy and Bioallied Sciences, vol. 3, no. 3, pp. 426–434, 2011.
[47]
V. M. Pandya, J. K. Patel, and D. J. Patel, “Effect of different stabilizer on the formulation of simvastatin nanosuspension prepared by nanoprecipitation technique,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 1, no. 4, pp. 910–917, 2010.
[48]
L. Zhao, Y. Wei, Y. Yu, and W. Zheng, “Polymer blends used to prepare nifedipine loaded hollow microspheres for a floating-type oral drug delivery system: In vitro evaluation,” Archives of Pharmacal Research, vol. 33, pp. 443–450, 2010.
[49]
G. P. Kumar and K. G. Krishna, “Nanosuspensions: the solution to deliver hydrophobic drugs,” International Journal of Drug Delivery, vol. 3, pp. 546–557, 2011.
[50]
J. Hecq, M. Deleers, D. Fanara, H. Vranckx, and K. Amighi, “Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine,” International Journal of Pharmaceutics, vol. 299, no. 1-2, pp. 167–177, 2005.
[51]
Bhavna, F. J. Ahmad, R. K. Khar, S. Sultana, and A. Bhatnagar, “Techniques to develop and characterize nanosized formulation for salbutamol sulfate,” Journal of Materials Science: Materials in Medicine, vol. 20, supplement 1, pp. S71–S76, 2009.
[52]
H. Piao, N. Kamiya, A. Hirata, T. Fujii, and M. Goto, “A novel solid-in-oil nanosuspension for transdermal delivery of diclofenac sodium,” Pharmaceutical Research, vol. 25, no. 4, pp. 896–901, 2008.
[53]
G. Lei, Z. Dianrui, C. Minghui, Z. Tingting, and W. Shumei, “Preparation and characterization of an oridonin nanosuspension for solubility and dissolution velocity enhancement,” Drug Development and Industrial Pharmacy, vol. 33, no. 12, pp. 1332–1339, 2007.
[54]
X. Qi, D. Zhang, X. Xu, et al., “Oridonin nanosuspension was more effective than free oridonin on G2/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line,” International Journal of Nanomedicine, vol. 7, pp. 1793–1804, 2012.
[55]
R. Ravichandran, “Preparation and characterization of albendazole nanosuspensions for oral delivery,” International Journal of Green Nanotechnology, vol. 2, no. 1, pp. B1–B24, 2010.
[56]
R. Dhanapal and J. V. Ratna, “Nanosuspensions technology in drug delivery-a review,” International Journal of Pharmacy Review & Research, vol. 2, no. 1, pp. 46–52, 2012.
[57]
R. Shegokar, K. K. Singh, and R. H. Müller, “Nevirapine nanosuspension: comparative investigation of production methods,” Nanotechnology Development, vol. 1, no. e4, pp. 16–22, 2011.
[58]
“Enhanced Analgesic activity of Polymeric or Lipidic Nanosuspension of Naproxen,” http://www.aapsj.org/abstracts/AM_2002/AAPS2002-002064.pdf.
[59]
P. Lakshmi and G. A. Kumar, “Nanosuspension technology: a review,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, supplement 4, pp. 35–40, 2010.
[60]
E. Merisko-Liversidge and G. G. Liversidge, “Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology,” Advanced Drug Delivery Reviews, vol. 63, no. 6, pp. 427–440, 2011.
[61]
O. Kayser, “Nanosuspensions for the formulation of aphidicolin to improve drug targeting effects against Leishmania infected macrophages,” International Journal of Pharmaceutics, vol. 196, no. 2, pp. 253–256, 2000.
[62]
N. Scholer, K. Krause, O. Kayser, et al., “Atovaquone nanosuspensions show excellent therapeutic effect in a new murine model of reactivated toxoplasmosis,” Antimicrobial Agents and Chemotherapy, vol. 45, pp. 1771–1779, 2001.
[63]
K. K. Jain, “Miscellaneous applications,” in The Handbook of Nanomedicine, p. 325, Humana Press, New York, NY, USA, 2008.
[64]
L. Gao, G. Liu, X. Wang, F. Liu, Y. Xu, and J. Ma, “Preparation of a chemically stable quercetin formulation using nanosuspension technology,” International Journal of Pharmaceutics, vol. 404, no. 1-2, pp. 231–237, 2011.
[65]
E. Ojewole, I. Mackraj, P. Naidoo, and T. Govender, “Exploring the use of novel drug delivery systems for antiretroviral drugs,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 70, no. 3, pp. 697–710, 2008.
[66]
R. H. Müller and C. M. Keck., “Twenty years of drug nanocrystals: where are we, and where do we go?” European Journal of Pharmaceutics and Biopharmaceutics, vol. 80, pp. 1–3, 2012.
[67]
J. M. Tam, J. D. Engstrom, D. Ferrer, R. O. Williams, and K. P. Johnston, “Templated open flocs of anisotropic particles for pulmonary delivery with pressurized metered dose inhalers,” Journal of Pharmaceutical Sciences, vol. 99, no. 7, pp. 3150–3165, 2010.
[68]
J. D. Engstrom, J. M. Tam, M. A. Miller, R. O. Williams, and K. P. Johnston, “Templated open flocs of nanorods for enhanced pulmonary delivery with pressurized metered dose inhalers,” Pharmaceutical Research, vol. 26, no. 1, pp. 101–117, 2009.
[69]
P. P. Constantinides, M. V. Chaubal, and R. Shorr, “Advances in lipid nanodispersions for parenteral drug delivery and targeting,” Advanced Drug Delivery Reviews, vol. 60, no. 6, pp. 757–767, 2008.
[70]
Z. Bourezg, S. Bourgeois, S. Pressenda, T. Shehada, and H. Fessi, “Redispersible lipid nanoparticles of Spironolactone obtained by three drying methods,” Colloids and Surfaces A, vol. 413, no. 5, pp. 191–199, 2012.
[71]
N. Saffoon, R. Uddin, N. H. Huda, and K. B. Sutradhar, “Enhancement of oral bioavailability and solid dispersion: a review,” Journal of Applied Pharmaceutical Science, vol. 1, no. 7, pp. 13–20, 2011.