The reinforcement of epoxy by MWCNTs is done to obtain the required properties of composites. However, the homogeneous dispersion of MWCNTs in epoxy is a critical problem. Hence, an attempt is made to optimize the processing conditions for dispersing the MWCNTs in epoxy by solvent dispersion technique. The epoxy/MWCNTs mixture was prepared using three methods: (1) magnetic stirring at 55°C, (2) hot air oven process at 55°C, and (3) vacuum oven process at room temperature. The nanocomposites having 0.1 and 0.2?wt.% of MWCNTs were prepared, for each method. The mechanical properties of nanocomposites were studied as per ASTM-D695, and the thermal conductivity was measured using KD2 probe. It is observed that the compressive strength, Young’s modulus, and thermal conductivity of 0.2?wt.% of MWCNTs prepared by vacuum oven method were found to be enhanced by 39.4, 10.7, and 59.2%, respectively, compared to those of pure epoxy. Though the properties of nanocomposites were increased with MWCNTs’ concentration irrespective of the processing techniques, the vacuum-processed sample showed the most enhanced properties compared to any other method. It is concluded that a unique method for the dispersion of MWCNTs in epoxy is the solvent dispersion technique with vacuum drying process. 1. Introduction The usage of nanoparticles as the reinforcement in a polymer matrix is increased enormously to achieve the required properties of composites. Among all the fillers such as TiO2, ZrO2, and nanoclay, multiwalled carbon nanotubes (MWCNTs) were paid a lot of attention because of their attractive mechanical properties which were reported by Gojny et al. [1]. Good aspect ratio of MWCNTs with the specific surface area of 1300?m2/g helps in effective stress transfer from the matrix, which was studied by Yu et al. [2]. The desirable properties of MWCNTs made them a candidate for reinforcing the polymer matrix. Kim et al. [3] found that the homogenous dispersion of the MWCNTs which gives good interaction between the matrix and the reinforcement must be ensured, in order to achieve the improved properties of epoxy/MWCNTs nanocomposites. Starkova et al. [4] also evaluated the mechanical properties of the epoxy-based composites. The enhancement of Young’s modulus of 0.1?wt.% composites was found to be 2% compared to that of pure epoxy. Mahfuz et al. [5] studied the influence of MWCNTs in epoxy, and it was found that the mechanical and thermal properties of the composites were increased. It was observed by He and Tjong [6] that the homogeneous dispersion of reinforcement was
References
[1]
F. H. Gojny, M. H. G. Wichmann, B. Fiedler, and K. Schulte, “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study,” Composites Science and Technology, vol. 65, no. 15-16, pp. 2300–2313, 2005.
[2]
M.-F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Physical Review Letters, vol. 84, no. 24, pp. 5552–5555, 2000.
[3]
M. Kim, Y.-B. Park, O. I. Okoli, and C. Zhang, “Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites,” Composites Science and Technology, vol. 69, no. 3-4, pp. 335–342, 2009.
[4]
O. Starkova, S. T. Buschhorn, E. Mannov, K. Schulte, and A. Aniskevich, “Creep and recovery of epoxy/MWCNT nanocomposites,” Composites A, vol. 43, pp. 1212–1218, 2012.
[5]
H. Mahfuz, S. Zainuddin, M. R. Parker, T. Al-Saadi, V. K. Rangari, and S. Jeelani, “Reinforcement of SC-15 epoxy with CNT/CNF under high magnetic field: an investigation of mechanical and thermal response,” Journal of Materials Science, vol. 44, no. 4, pp. 1113–1120, 2009.
[6]
L. He and S. C. Tjong, “Carbon nanotube/epoxy resin composite: correlation between state of nanotube dispersion and Zener tunneling parameters,” Synthetic Metals, vol. 162, pp. 2277–2281, 2012.
[7]
P.-C. Ma, S.-Y. Mo, B.-Z. Tang, and J.-K. Kim, “Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites,” Carbon, vol. 48, no. 6, pp. 1824–1834, 2010.
[8]
N. A. Buang, F. Fadil, Z. A. Majid, and S. Shahir, “Characteristic of mild acid functionalized multiwalled carbon nanotubes towards high dispersion with low structural defects,” Digest Journal of Nanomaterials and Biostructures, vol. 7, no. 1, pp. 33–39, 2012.
[9]
M. Theodore, M. Hosur, J. Thomas, and S. Jeelani, “Influence of functionalization on properties of MWCNT-epoxy nanocomposites,” Materials Science and Engineering A, vol. 528, no. 3, pp. 1192–1200, 2011.
[10]
N. Yu, Z. H. Zhang, and S. Y. He, “Fracture toughness and fatigue life of MWCNT/epoxy composites,” Materials Science and Engineering A, vol. 494, no. 1-2, pp. 380–384, 2008.
[11]
M. M. Rahman, S. Zainuddin, M. V. Hosur et al., “Improvements in mechanical and thermo-mechanical properties of e-glass/epoxy composites using amino functionalized MWCNTs,” Composite Structures, vol. 94, pp. 2397–2406, 2012.
[12]
W. Cui, F. Du, J. Zhao et al., “Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes,” Carbon, vol. 49, no. 2, pp. 495–500, 2011.
[13]
S. K. Pillai and S. S. Ray, “Epoxy-based carbon nanotubes reinforced composites in advances,” in Nanocomposites—Synthesis, Characterization and Industrial Applications, B. Reddy, Ed., pp. 727–792, 2011.
[14]
J. G. Park, Q. Cheng, J. Lu et al., “Thermal conductivity of MWCNT/epoxy composites: the effects of length, alignment and functionalization,” Carbon, vol. 50, no. 6, pp. 2083–2090, 2012.
[15]
K. Esumi, M. Ishigami, A. Nakajima, K. Sawada, and H. Honda, “Chemical treatment of carbon nanotubes,” Carbon, vol. 34, no. 2, pp. 279–281, 1996.
[16]
M. A. M. Motchelaho, H. Xiong, M. Moyo, L. L. Jewell, and N. J. Coville, “Effect of acid treatment on the surface of multiwalled carbon nanotubes prepared from Fe-Co supported on CaCO3: correlation with Fischer-Tropsch catalyst activity,” Journal of Molecular Catalysis A: Chemical, vol. 335, no. 1-2, pp. 189–198, 2011.
[17]
ASTM D 695-10., “Standard Test Method for Compressive Properties of Rigid Plastics,” 2010.
[18]
F. H. Gojny and K. Schulte, “Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites,” Composites Science and Technology, vol. 64, no. 15, pp. 2303–2308, 2004.
[19]
L. Guadagno, L. Vertuccio, A. Sorrentino et al., “Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes,” Carbon, vol. 47, no. 10, pp. 2419–2430, 2009.
[20]
G. Venkata Ramana, B. Padya, R. Naresh Kumar, K. P. V. Prabhakar, and P. K. Jain, “Mechanical properties of multi-walled carbon nanotubes reinforced polymer nanocomposites,” Indian Journal of Engineering and Materials Sciences, vol. 17, no. 5, pp. 331–337, 2010.