%0 Journal Article %T Optimizing the Processing Conditions for the Reinforcement of Epoxy Resin by Multiwalled Carbon Nanotubes %A S. Arun %A Mrutyunjay Maharana %A S. Kanagaraj %J Journal of Nanotechnology %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/634726 %X The reinforcement of epoxy by MWCNTs is done to obtain the required properties of composites. However, the homogeneous dispersion of MWCNTs in epoxy is a critical problem. Hence, an attempt is made to optimize the processing conditions for dispersing the MWCNTs in epoxy by solvent dispersion technique. The epoxy/MWCNTs mixture was prepared using three methods: (1) magnetic stirring at 55¡ãC, (2) hot air oven process at 55¡ãC, and (3) vacuum oven process at room temperature. The nanocomposites having 0.1 and 0.2£¿wt.% of MWCNTs were prepared, for each method. The mechanical properties of nanocomposites were studied as per ASTM-D695, and the thermal conductivity was measured using KD2 probe. It is observed that the compressive strength, Young¡¯s modulus, and thermal conductivity of 0.2£¿wt.% of MWCNTs prepared by vacuum oven method were found to be enhanced by 39.4, 10.7, and 59.2%, respectively, compared to those of pure epoxy. Though the properties of nanocomposites were increased with MWCNTs¡¯ concentration irrespective of the processing techniques, the vacuum-processed sample showed the most enhanced properties compared to any other method. It is concluded that a unique method for the dispersion of MWCNTs in epoxy is the solvent dispersion technique with vacuum drying process. 1. Introduction The usage of nanoparticles as the reinforcement in a polymer matrix is increased enormously to achieve the required properties of composites. Among all the fillers such as TiO2, ZrO2, and nanoclay, multiwalled carbon nanotubes (MWCNTs) were paid a lot of attention because of their attractive mechanical properties which were reported by Gojny et al. [1]. Good aspect ratio of MWCNTs with the specific surface area of 1300£¿m2/g helps in effective stress transfer from the matrix, which was studied by Yu et al. [2]. The desirable properties of MWCNTs made them a candidate for reinforcing the polymer matrix. Kim et al. [3] found that the homogenous dispersion of the MWCNTs which gives good interaction between the matrix and the reinforcement must be ensured, in order to achieve the improved properties of epoxy/MWCNTs nanocomposites. Starkova et al. [4] also evaluated the mechanical properties of the epoxy-based composites. The enhancement of Young¡¯s modulus of 0.1£¿wt.% composites was found to be 2% compared to that of pure epoxy. Mahfuz et al. [5] studied the influence of MWCNTs in epoxy, and it was found that the mechanical and thermal properties of the composites were increased. It was observed by He and Tjong [6] that the homogeneous dispersion of reinforcement was %U http://www.hindawi.com/journals/jnt/2013/634726/