The introduction of incretin hormone-based therapies represents a novel therapeutic strategy, since these drugs not only improve glycemia with minimal risk of hypoglycemia, but also have other extraglycemic beneficial effects. These agents, which are effective in improving glucose control, could also have positive effects on the incidence of cardiovascular events. The aim of this review is to summarize the present literature about the role of dipeptidyl peptidase 4 (DPP4) in cardiovascular districts, not only strictly correlated to its effect on glucagon-like peptide-1 (GLP-1) circulating levels, but also to what is known about possible cardiovascular actions. Actually, DPP4 is known to be present in many cells and tissues and its effects go beyond purely metabolic aspects. Almost always the inhibition of DPP4 activity is associated with improved cardiovascular profile, but it has shown to possess antithrombotic properties and these different effects could be connected with a site and/or species specificity of DPP4. Certainly, DPP4 seems to exert many functions, both directly and indirectly, on cardiovascular districts, opening new possibilities of prevention and treatment of complications at this level, not only in patients affected by diabetes mellitus. 1. Introduction Glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP4) inhibitors are currently used as glucose-lowering agents in type 2 diabetes, due to their effects on insulin and glucagon secretion. Many reviews show that these agents, which are effective in improving glucose control, could also have a beneficial effect on the incidence of cardiovascular (CV) events. The analysis of major CV events reported during trials with metabolic endpoints shows a significant reduction of risk with both classes of drugs. Longer-term trials specifically designed to assess the effects of GLP-1 receptor agonists and DPP4 inhibitors on major cardiovascular events are currently ongoing. Available data suggest that incretin-based therapies could prevent cardiovascular disease via multiple mechanisms; in particular, pilot studies in humans show that GLP-1 receptor agonists and DPP4 inhibitors are capable of ameliorating myocardial function and protect myocardiocytes from ischemic damage, independent of their glucose-lowering effects, and both classes of drugs enhance endothelial function [1–3]. In clinical studies, both GLP-1 receptor agonists and DPP4 inhibitors improve -cell function indexes; besides all these agents show trophic effects on beta-cell mass in animal studies. Their use
References
[1]
E. Mannucci and C. M. Rotella, “Future perspectives on glucagon-like peptide-1, diabetes and cardiovascular risk,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 18, no. 9, pp. 639–645, 2008.
[2]
T. Jose and S. E. Inzucchi, “Cardiovascular effects of the DPP-4 inhibitors,” Diabetes and Vascular Disease Research, vol. 9, no. 2, pp. 109–116, 2012.
[3]
E. Mannucci and I. Dicembrini, “Incretin-based therapies and cardiovascular risk,” Current Medical Research and Opinion, vol. 28, no. 5, pp. 715–721, 2012.
[4]
M. Gejl, H. M. S?ndergaard, C. Stecher et al., “Exenatide alters myocardial glucose transport and uptake depending on insulin resistance and increases myocardial blood flow in patients with type 2 diabetes,” Journal of Clinical Endocrinology & Metabolism, vol. 97, pp. E1165–E1169, 2012.
[5]
J. H. Best, B. J. Hoogwerf, W. H. Herman et al., “Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the Glucagon-Like Peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the lifelink database,” Diabetes Care, vol. 34, no. 1, pp. 90–95, 2011.
[6]
I. Dicembrini, L. Pala, and C. M. Rotella, “From theory to clinical practice in the use of GLP-1 receptor agonists and DPP-4 inhibitors therapy,” Experimental Diabetes Research, vol. 2011, Article ID 898913, 8 pages, 2011.
[7]
N. Aghili, M. Joseph Devaney, and O. Lee Alderman, “Polymorphisms in dipeptidyl peptidase IV gene are associated with the risk of myocardial infarction in patients with atherosclerosis,” Neuropeptides, vol. 46, pp. 367–371, 2012.
[8]
K. Augustyns, G. Bal, G. Thonus et al., “The unique properties of dipeptidyl-peptidase IV (DPP IV/CD26) and the therapeutic potential of DPP IV inhibitors,” Current Medicinal Chemistry, vol. 6, no. 4, pp. 311–327, 1999.
[9]
D. J. Drucker, “Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes: preclinical biology and mechanisms of action,” Diabetes Care, vol. 30, no. 6, pp. 1335–1343, 2007.
[10]
E. Mannucci, L. Pala, S. Ciani et al., “Hyperglycaemia increases dipeptidyl peptidase IV activity in diabetes mellitus,” Diabetologia, vol. 48, no. 6, pp. 1168–1172, 2005.
[11]
D. Lamers, S. Famulla, N. Wronkowitz et al., “Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome,” Diabetes, vol. 60, no. 7, pp. 1917–1925, 2011.
[12]
G. P. Fadini and A. Avogaro, “Cardiovascular effects of DPP-4 inhibition: beyond GLP-1,” Vascular Pharmacology, vol. 55, no. 1–3, pp. 10–16, 2011.
[13]
M. Rizzo, A. A. Rizvi, G. A. Spinas, G. B. Rini, and K. Berneis, “Glucose lowering and anti-atherogenic effects of incretin-based therapies: GLP-1 analogues and DPP-4-inhibitors,” Expert Opinion on Investigational Drugs, vol. 18, no. 10, pp. 1495–1503, 2009.
[14]
J. Zhong, X. Rao, and S. Rajagopalan, “An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease,” Atherosclerosis, vol. 226, no. 2, pp. 305–314, 2013.
[15]
Y. Kirino, M. Sei, K. Kawazoe, K. Minakuchi, and Y. Sato, “Plasma dipeptidyl peptidase 4 activity correlates with body mass index and the plasma adiponectin concentration in healthy young people,” Endocrine Journal, vol. 59, no. 10, pp. 949–953, 2012.
[16]
Y. Kirino, Y. Sato, T. Kamimoto, K. Kawazoe, K. Minakuchi, and Y. Nakahori, “Interrelationship of dipeptidyl peptidase IV (DPP4) with the development of diabetes, dyslipidaemia and nephropathy: a streptozotocin-induced model using wild-type and DPP4-deficient rats,” Journal of Endocrinology, vol. 200, no. 1, pp. 53–61, 2009.
[17]
H.-C. Ku, W.-P. Chen, and M.-J. Su, “DPP4 deficiency preserves cardiac function via GLP-1 signaling in rats subjected to myocardial ischemia/reperfusion,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 384, no. 2, pp. 197–207, 2011.
[18]
M. Sauvé, K. Ban, M. Abdul Momen et al., “Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice,” Diabetes, vol. 59, no. 4, pp. 1063–1073, 2010.
[19]
V. F. M. Segers, V. Revin, W. Wu et al., “Protease-resistant stromal cell-derived factor-1 for the treatment of experimental peripheral artery disease,” Circulation, vol. 123, no. 12, pp. 1306–1315, 2011.
[20]
B. C. Huber, S. Brunner, A. Segeth et al., “Parathyroid hormone is a DPP-IV inhibitor and increases SDF-1-driven homing of CXCR4+ stem cells into the ischaemic heart,” Cardiovascular Research, vol. 90, no. 3, pp. 529–537, 2011.
[21]
T. Shigeta, M. Aoyama, Y. K. Bando et al., “Dipeptidyl peptidase-4 modulates left ventricular dysfunction in chronic heart failure via angiogenesis-dependent and -independent actions,” Circulation, vol. 126, no. 15, pp. 1838–1851, 2012.
[22]
N. Gomez, V. Matheeussen, C. Damoiseaux et al., “Effect of heart failure on dipeptidyl peptidase IV activity in plasma of dogs,” Journal of Veterinary Internal Medicine, vol. 26, no. 4, pp. 929–934, 2012.
[23]
L. Pala, A. Pezzatini, I. Dicembrini et al., “Different modulation of dipeptidyl peptidase-4 activity between microvascular and macrovascular human endothelial cells,” Acta Diabetologica, vol. 49, supplement 1, pp. S59–S63, 2012.
[24]
Y. Hattori, T. Jojima, A. Tomizawa et al., “A glucagon-like peptide-1 (GLP-1) analogue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells,” Diabetologia, vol. 53, no. 10, pp. 2256–2263, 2010.
[25]
X.-Y. Xie, Z.-H. Mo, K. Chen, H.-H. He, and Y.-H. Xie, “Glucagon-like peptide-1 improves proliferation and differentiation of endothelial progenitor cells via upregulating VEGF generation,” Medical Science Monitor, vol. 17, no. 2, pp. BR35–BR41, 2011.
[26]
E. W. Lee, M. Michalkiewicz, J. Kitlinska et al., “Neuropeptide Y induces ischemic angiogenesis and restores function of ischemic skeletal muscles,” Journal of Clinical Investigation, vol. 111, no. 12, pp. 1853–1862, 2003.
[27]
P. Bu?ek, J. Stremeňová, E. K?epela, and A. ?edo, “Modulation of substance P signaling by dipeptidyl peptidase-IV enzymatic activity in human glioma cell lines,” Physiological Research, vol. 57, pp. 443–449, 2008.
[28]
R. Mentlein and E. Heymann, “Dipeptidyl peptidase IV inhibits the polymerization of fibrin monomers,” Archives of Biochemistry and Biophysics, vol. 217, no. 2, pp. 748–750, 1982.
[29]
P. A. J. Krijnen, N. E. Hahn, I. Kholová et al., “Loss of DPP4 activity is related to a prothrombogenic status of endothelial cells: implications for the coronary microvasculature of myocardial infarction patients,” Basic Research in Cardiology, vol. 107, no. 1, article 233, 2012.