%0 Journal Article %T The Role of DPP4 Activity in Cardiovascular Districts: In Vivo and In Vitro Evidence %A L. Pala %A C. M. Rotella %J Journal of Diabetes Research %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/590456 %X The introduction of incretin hormone-based therapies represents a novel therapeutic strategy, since these drugs not only improve glycemia with minimal risk of hypoglycemia, but also have other extraglycemic beneficial effects. These agents, which are effective in improving glucose control, could also have positive effects on the incidence of cardiovascular events. The aim of this review is to summarize the present literature about the role of dipeptidyl peptidase 4 (DPP4) in cardiovascular districts, not only strictly correlated to its effect on glucagon-like peptide-1 (GLP-1) circulating levels, but also to what is known about possible cardiovascular actions. Actually, DPP4 is known to be present in many cells and tissues and its effects go beyond purely metabolic aspects. Almost always the inhibition of DPP4 activity is associated with improved cardiovascular profile, but it has shown to possess antithrombotic properties and these different effects could be connected with a site and/or species specificity of DPP4. Certainly, DPP4 seems to exert many functions, both directly and indirectly, on cardiovascular districts, opening new possibilities of prevention and treatment of complications at this level, not only in patients affected by diabetes mellitus. 1. Introduction Glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP4) inhibitors are currently used as glucose-lowering agents in type 2 diabetes, due to their effects on insulin and glucagon secretion. Many reviews show that these agents, which are effective in improving glucose control, could also have a beneficial effect on the incidence of cardiovascular (CV) events. The analysis of major CV events reported during trials with metabolic endpoints shows a significant reduction of risk with both classes of drugs. Longer-term trials specifically designed to assess the effects of GLP-1 receptor agonists and DPP4 inhibitors on major cardiovascular events are currently ongoing. Available data suggest that incretin-based therapies could prevent cardiovascular disease via multiple mechanisms; in particular, pilot studies in humans show that GLP-1 receptor agonists and DPP4 inhibitors are capable of ameliorating myocardial function and protect myocardiocytes from ischemic damage, independent of their glucose-lowering effects, and both classes of drugs enhance endothelial function [1¨C3]. In clinical studies, both GLP-1 receptor agonists and DPP4 inhibitors improve -cell function indexes; besides all these agents show trophic effects on beta-cell mass in animal studies. Their use %U http://www.hindawi.com/journals/jdr/2013/590456/