全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Docking Assessment of Efficacy of Different Clinically Used Arsenic Chelator Drugs

DOI: 10.1155/2013/396768

Full-Text   Cite this paper   Add to My Lib

Abstract:

Arsenic contamination of ground water has become a global problem affecting specially, south-east Asian countries like Bangladesh and eastern parts of India. It also affects South America and some parts of the US. Different organs of the physiological system are affected due to contamination of inorganic arsenic in water. Animal studies with different chelators are not very conclusive as far as the multi/differential organ effect(s) of arsenic is concerned. Our docking study establishes the molecular rationale of blood test for early detection of arsenic toxicity; as arsenic has a high affinity to albumin, a plasma protein and actin, a structural protein of all cells including Red Blood Cells. This study also shows that there is a little possibility of male reproductive organs toxicity by different forms of inorganic arsenic; however, female reproductive system is very much susceptible to sodium-arsenite. Through comparative analysis regarding the chelating effectiveness among the available arsenic chelator drugs, meso-2,3 dimercaptosuccinic acid (DMSA) and in some cases lipoic acid is the most preferred choice of drug for removing of arsenic deposits. This computational method actually reinforces the clinical finding regarding DMSA as the most preferred drug in removal of arsenic deposits from majority of the human tissues. 1. Introduction The source of arsenic poisoning comes through drinking water and has now become a major concern throughout the globe. It affects a large population of Bangladesh [1] and eastern part of India. Arsenic occurs in nature in both organic and inorganic forms; the latter being more toxic. Inorganic form combines mainly with oxygen and sulfur. In drinking water, it is mainly present as arsenious acid in trivalent [As(III)] state [2]. Arsenic trioxide (ATO) (As2O3) dissolves in water under conditions dependent on pH, presence of redox chemicals, reducing bacteria, and so on to produce this arsenious acid [3]. Arsenic rarely occurs in the zero valent metalloid state and mostly occurs in the trivalent state and occasionally in the pentavalent state. Pentavalent arsenic compounds tend to decompose into trivalent state when ingested. Within physiological system, pentavalent arsenic uses ADP and uncouple oxidative phosphorylation to change to trivalent arsenic [4]. So, the main toxicity of inorganic arsenic comes from trivalent arsenic. The toxicity of trivalent arsenic [As(III)] arises from the fact that it binds to free thiol (–SH) groups in proteins, especially vicinal thiol groups [5]. Clinical reports suggest that arsenic

References

[1]  A. H. Smith, E. O. Lingas, and M. Rahman, “Contamination of drinking-water by arsenic in Bangladesh: a public health emergency,” Bulletin of the World Health Organization, vol. 78, no. 9, pp. 1093–1103, 2000.
[2]  S. Barlow, “Scientific facts on arsenic-details on arsenic level 2,” GreenFacts, 2004, http://www.greenfacts.org/en/arsenic/l-2/index.htm#0.
[3]  D. MacRae, “How does arsenic get into the groundwater?” http://www.civil.umaine.edu/macrae/arsenic_gw.htm.
[4]  S. M. Gorby, “Clinical conference on arsenic poisoning,” Western Journal of Medicine, vol. 149, pp. 308–315, 1998.
[5]  N. A. Rey, O. W. Howarth, and E. C. Pereira-Maia, “Equilibrium characterization of As(III)-cysteine and As(III)-glutathione systems in aqueous solution,” Journal of Inorganic Biochemistry, vol. 98, no. 6, pp. 1151–1159, 2004.
[6]  R. L. Tatken and R. J. Lewis, Eds., Registry of Toxic Effects Chemical Substances, US Department of Health and Human Services, Cincinnati, Ohio, USA, 1983.
[7]  A. M. Hays, R. C. Lantz, L. S. Rodgers et al., “Arsenic-induced decreases in the vascular matrix,” Toxicologic Pathology, vol. 36, no. 6, pp. 805–817, 2008.
[8]  J. T. Hindmarsh and R. F. McCurdy, “Clinical and environmental aspects of arsenic toxicity,” Critical Reviews in Clinical Laboratory Sciences, vol. 23, no. 4, pp. 315–347, 1986.
[9]  J. P. Buchet and R. Lauwerys, “Role of thiols in the in-vitro methylation of inorganic arsenic by rat liver cytosol,” Biochemical Pharmacology, vol. 37, no. 16, pp. 3149–3153, 1988.
[10]  H. V. Aposhian, “Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity,” Annual Review of Pharmacology and Toxicology, vol. 37, pp. 397–419, 1997.
[11]  S. J. S. Flora and V. Pachauri, “Chelation in metal intoxication,” International Journal of Environmental Research and Public Health, vol. 7, no. 7, pp. 2745–2788, 2010.
[12]  L. Benramdane, M. Accominotti, L. Fanton, D. Malicier, and J. J. Vallon, “Arsenic speciation in human organs following fatal arsenic trioxide poisoning—a case report,” Clinical Chemistry, vol. 45, no. 2, pp. 301–306, 1999.
[13]  E. Marafante, J. Rade, E. Sabbioni, F. Bertolero, and V. Foa, “Intracellular interaction and metabolic fate of arsenite in the rabbit,” Clinical Toxicology, vol. 18, no. 11, pp. 1335–1341, 1981.
[14]  G. M. Bogdan, A. Sampayo-Reyesb, and H. Vasken-Aposhian, “Arsenic binding proteins of mammalian systems: I. isolation of three arsenite-binding proteins of rabbit liver,” Toxicology, vol. 93, no. 2-3, pp. 175–193, 1994.
[15]  H. V. Aposhian, D. E. Carter, T. D. Hoover, C. A. Hsu, R. M. Maiorino, and E. Stine, “DMSA, DMPS, and DMPA—as arsenic antidotes,” Fundamental and Applied Toxicology, vol. 4, no. 2, pp. S58–S70, 1984.
[16]  H. Jiang, J. Ding, P. Chang, Z. Chen, and G. Sun, “Determination of the interaction of arsenic and human serum albumin by online microdialysis coupled to LC with hydride generation atomic fluorescence spectroscopy,” Chromatographia, vol. 71, no. 11-12, pp. 1075–1079, 2010.
[17]  S. Shila, M. Subathra, M. A. Devi, and C. Panneerselvam, “Arsenic intoxication-induced reduction of glutathione level and of the activity of related enzymes in rat brain regions: reversal by DL-alpha-lipoic acid,” Archives of Toxicology, vol. 79, no. 3, pp. 140–146, 2005.
[18]  W. T. Klimecki, A. H. Borchers, R. E. Egbert, R. B. Nagle, D. E. Carter, and G. T. Bowden, “Effects of acute and chronic arsenic exposure of human-derived keratinocytes in an in vitro human skin equivalent system: a novel model of human arsenicism,” Toxicology in Vitro, vol. 11, no. 1-2, pp. 89–98, 1997.
[19]  M. R. Karim, K. A. Salam, E. Hossain et al., “Interaction between chronic arsenic exposure via drinking water and plasma lactate dehydrogenase activity,” Science of the Total Environment, vol. 409, no. 2, pp. 278–283, 2010.
[20]  J. C. Davey, J. E. Bodwell, J. A. Gosse, and J. W. Hamilton, “Arsenic as an endocrine disruptor: effects of arsenic on estrogen receptor-mediated gene expression in vivo and in cell culture,” Toxicological Sciences, vol. 98, no. 1, pp. 75–86, 2007.
[21]  S. Lin, L. M. Del Razo, M. Styblo, C. Wang, W. R. Cullen, and D. J. Thomas, “Arsenicals inhibit thioredoxin reductase in cultured rat hepatocytes,” Chemical Research in Toxicology, vol. 14, no. 3, pp. 305–311, 2001.
[22]  S. Maiti and A. K. Chatterjee, “Effects on levels of glutathione and some related enzymes in tissues after an acute arsenic exposure in rats and their relationship to dietary protein deficiency,” Archives of Toxicology, vol. 75, no. 9, pp. 531–537, 2001.
[23]  T. Samikkannu, C. H. Chen, L. H. Yih et al., “Reactive oxygen species are involved in arsenic trioxide inhibition of pyruvate dehydrogenase activity,” Chemical Research in Toxicology, vol. 16, no. 3, pp. 409–414, 2003.
[24]  Y. H. Ling, J. D. Jiang, J. F. Holland, and R. Perez-Soler, “Arsenic trioxide produces polymerization of microtubules and mitotic arrest before apoptosis in human tumor cell lines,” Molecular Pharmacology, vol. 62, no. 3, pp. 529–538, 2002.
[25]  M. Izdebska, A. Grzanka, M. Ostrowski, A. Zuryń, and D. Grzanka, “Effect of arsenic trioxide (Trisenox) on actin organization in K-562 erythroleukemia cells,” Folia Histochemica et Cytobiologica, vol. 47, no. 3, pp. 453–459, 2009.
[26]  E. K. Silbergeld, “Toxicology,” in ILO Encyclopedia of Occupational Health & Safety, chapter 33, part 4, International Labour Office, Washington, DC, USA, 4th edition, 1998.
[27]  R. Huey and G. Morris, “Using autodock 3 with autodocktools 3.05 a tutorial by the Scripps Research Institute,” 2006, http://autodock.scripps.edu/faqs-help/tutorial/using-autodock-with-autodocktools/UsingAutoDockWithADT_v2e.pdf.
[28]  R. Huey and G. Morris, “Using autodock 3 with autodocktools 3.05 a tutorial by the Scripps Research Institute,” 2008, http://autodock.scripps.edu/faqs-help/tutorial/using-autodock-4-with-autodocktools/UsingAutoDock4WithADT_1.4.5d.pdf.
[29]  H. M. Berman, J. Westbrook, Z. Feng et al., “The protein data bank,” Nucleic Acids Research, vol. 28, no. 1, pp. 235–242, 2000.
[30]  HMDB: The Human Metabolome Database, http://www.hmdb.ca/.
[31]  D. S. Wishart, C. Knox, A. C. Guo et al., “Drugbank: a comprehensive resource for in silico drug discovery and exploration,” Nucleic Acids Research, vol. 1, pp. 34–36, 2006.
[32]  “PubChem,” http://pubchem.ncbi.nlm.nih.gov/.
[33]  “Gnu-darwin,” http://molecules.gnu-darwin.org/mod/e-e–more.html.
[34]  S. Mukherjee and D. Majumder, “Computational molecular docking assessment of hormone receptor adjuvant drugs: breast cancer as an example,” Pathophysiology, vol. 16, no. 1, pp. 19–29, 2009.
[35]  M. M. Khan, M. K. Hossain, K. Kobayashi et al., “Levels of blood and urine chemicals associated with longer duration of having arsenicosis in Bangladesh,” International Journal of Environmental Health Research, vol. 15, no. 4, pp. 289–301, 2005.
[36]  Y. Gilgun-Sherki, E. Melamed, and D. Offen, “Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier,” Neuropharmacology, vol. 40, no. 8, pp. 959–975, 2001.
[37]  H. Antrup and N. Seiler, “On the turnover of polyamines spermidine and spermine in mouse brain and other organs,” Neurochemical Research, vol. 5, no. 2, pp. 123–143, 1980.
[38]  S. J. Flora, S. Bhadauria, S. C. Pant, and R. K. Dhaked, “Arsenic induced blood and brain oxidative stress and its response to some thiol chelators in rats,” Life Sciences, vol. 77, no. 18, pp. 2324–2337, 2005.
[39]  J. Pi, S. Horiguchi, Y. Sun et al., “A potential mechanism for the impairment of nitric oxide formation caused by prolonged oral exposure to arsenate in rabbits,” Free Radical Biology and Medicine, vol. 35, no. 1, pp. 102–113, 2003.
[40]  H. Shi, X. Shi, and K. J. Liu, “Oxidative mechanism of arsenic toxicity and carcinogenesis,” Molecular and Cellular Biochemistry, vol. 255, no. 1-2, pp. 67–78, 2004.
[41]  A. S. Andrew, J. L. Burgess, M. M. Meza et al., “Arsenic exposure is associated with decreased DNA repair in vitro and in individuals exposed to drinking water arsenic,” Environmental Health Perspectives, vol. 114, no. 8, pp. 1193–1198, 2006.
[42]  “Times of India,” http://articles.timesofindia.indiatimes.com/2012-04-17.
[43]  “Humane society International,” http://www.hsi.org/issues/biomedical_research/facts/news_eu_law.html.
[44]  “Report from the Commission to the European Parliament & the Council,” Tech. Rep., Brussels, Belgium, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133